Virginia Tech® home

Inverse Problems

Research Advisors for Inverse Problems

  • Bio Item
    Daniel Appelo profile picture
    Daniel Appelö , bio

    Professor Daniel Appelö is a numerical analyst with an interest in computational techniques for solving differential equations fast and accurately. He is excited about applications in acoustics, electromagnetics, fluids, and more recently in quantum computing.

  • Bio Item
    John Burns profile picture
    John Burns , bio

    Professor Burns' current research is focused on computational methods for modeling, control, estimation and optimization of complex systems where spatially distributed information is essential. This includes systems modeled by partial and delay differential equations. Recent applications include modeling and control of thermal fluids, design and thermal management systems and optimization of mobile sensor networks.

  • Bio Item
    Eric de Sturler  profile picture
    Eric de Sturler , bio

    Professor de Sturler's research focuses on numerical analysis for large-scale computational problems with an emphasis on fast solvers for linear and nonlinear systems, inverse problems and parameter estimation, optimization, and design, including iterative solvers and numerical linear algebra, randomization, stochastic methods, model reduction, and high performance computing with applications in computational mechanics, such structural optimization and computational fluid dynamics, tomography and image reconstruction, big data, computational physics, biology, and computer graphics.

  • Bio Item
    Serkan Gugercin profile picture
    Serkan Gugercin , bio

    Professor Gugercin studies computational mathematics, numerical analysis, and systems and control theory with a focus on data-driven modeling and model reduction of large-scale dynamical systems with applications to inverse problems, structural dynamics, material design, and flow control.

  • Bio Item
    Tao Lin profile picture
    Tao Lin , bio

    Professor Tao Lin's main research interest is the numerical analysis on computational methods related with differential equations. He designs new numerical methods and carry out their convergence analysis. His recent research focuses on immersed finite element (IFE) methods that can solve interface problems of partial differential equation with interface independent meshes. He is also working on applying IFE methods to interface inverse problems via the shape optimization methodology.

  • Bio Item
    Mirjeta Pasha's profile picture
    Mirjeta Pasha (starting Fall 2024) , bio

    Dr. Pasha is an Assistant Professor with research interests on high dimensional (tensor) data analysis, regularization for inverse problems, uncertainty quantification, and high-performance computing. She develops computationally efficient methods and algorithms to solve large-scale problems that arise from an extensive list of applications in data science, medicine, and engineering.

  • Bio Item
    man smiles wearing a marathon tshirt in front of stone building
    Johann Rudi , bio

    Professor Johann Rudi's research is interdisciplinary and spans large-scale parallel iterative methods for nonlinear and linear systems, development and implementation of algorithms for high-performance computing (HPC) platforms, computational aspects of inverse problems, and quantification of uncertainties in the inferred parameters.

  • Bio Item
    Timothy Warburton profile picture
    Tim Warburton , bio

    Professor Warburton holds the John K. Costain Chair in the College of Science at Virginia Tech and is a faculty member of both the Department of Mathematics and the Computational Modeling and Data Analytics program. His research interests include developing new parallel algorithms and methods that are used to solve PDE based physical modes on the largest supercomputers.

  • Bio Item
    Layne T. Watson profile picture
    Layne T. Watson , bio

    Dr. Watson's research interests include numerical analysis; nonlinear programming; mathematical software; solid mechanics; fluid mechanics; image processing; parallel computation; bioinformatics.

Researchers of Inverse Problems