Determining How Order of Quantification Impacts Mathematical Logic

Reference:

Vroom, K. (2020). Guided reinvention as a context for investigating students' thinking about mathematical language and for supporting students in gaining fluency (Doctoral dissertation). Dissertations and theses.

Let S be a circle of radius 5 . Let $d(a, b)$ denote the distance between two points a and b. For example, in the picture below, the point a is inside S, the point b is on S, and $d(a, b)=5$.

1. Determine whether each of the following statements is true or false.
(a) There is a point a inside S such that for every point b on $S, d(a, b)=5$.
(b) For every point b on S there is a point a inside S such that $d(a, b)=5$.
(c) There is a point a inside S such that for every point b on $S, d(a, b)=7$.
(d) For every point b on S there is a point a inside S such that $d(a, b)=7$.
(e) For all points a inside S, there is a point b on S such that $d(a, b)=5$.
(f) There is a point b on S such that for any point a inside $S, d(a, b)=5$.
(g) For all points a inside S, there is a point b on S such that $d(a, b)=7$.
(h) There is a point b on S such that for any point a inside $S, d(a, b)=7$.
2. For which distances c, are the following statements true?
(a) There is a point a inside S such that for every point b on $S, d(a, b)=c$.
(b) For every point b on S, there is a point a inside S such that $d(a, b)=c$.
(c) For all points a inside S, there is a point b on S such that $d(a, b)=c$.
(d) There is a point b on S such that for all points a inside $S, d(a, b)=c$.
