Proving Multiply Quantified Statements

Reference:

Vroom, K., & Alzaga Elizondo, T. (2022). Students' Thinking about the Structure of Constructive Existence Proofs. International Journal of Research in Undergraduate Mathematics Education, 1-23.

Below are six statements about real numbers m, b, and x.

- 1. There exist real numbers m, b, and x such that mx + b = 0.
- 2. For all real numbers m, b, and x, mx + b = 0.
- 3. There exists a real number m such that for every real number b there is a real number x such that mx + b = 0.
- 4. There exists a real number m such that for all real numbers x there exists a real number b such that mx + b = 0.
- 5. There are real numbers b and m such that mx + b = 0 for every real number x.
- 6. There exists a real number b and a real number x such that for all real numbers m, mx+b=0.
- (a) Can you visualize graphically what each statement is saying? One of them is not true. Which one? Explain why this statement is false.
- (b) Match each of the statements that are true with the following proofs.

Proof A: Let $m = 1$. Then, for any real number b , choose $x = -b$. Therefore, $mx + b = 1 \cdot (-b) + b$ = -b + b = 0.	Proof B: Let $m = 1$. Then, for any real number x , let $b = -x$. So, $mx + b = 1 \cdot (-x) + x$ = -x + x = 0.	Proof C: Fix an arbitrary x. Let $b = 0$. Observe that, when $m = 0$, $mx + b = 0 \cdot x + 0$ = 0 + 0 = 0.
Proof D: Let $b = 0$. Observe that, when $x = 0$, $mx + b = m \cdot 0 + 0 = 0$ for any real number m .	Proof E: Let $b = 0$, $m = 1$, and $x = 0$. Therefore, $mx + b = 1 \cdot 0 + 0 = 0$.	