Introduction to the Universal Quantifier

Consider a "for all" statement of the following form:

$$
\text { For all } x \in U_{x}, P(x)
$$

Notation:

Examples:

- Every real number x satisfies $x^{2}>0$.
- Given a matrix A, if $\operatorname{det} A \neq 0$, then A is invertible.
- 0 is the additive identity on \mathbb{R}.
- \mathbb{Z} is closed under addition.

When is a "for all" statement true?

When is it false?

How might we prove it?

