Analyzing "Proofs" of a Logical Implication

Reference:

Hub, A., \& Dawkins, P. C. (2018). On the construction of set-based meanings for the truth of mathematical conditionals. The Journal of Mathematical Behavior, 50, 90-102.

Consider the following statement.
For every integer x, if x is a multiple of 6 , then x is a multiple of 3 .
Below, three proofs are given. For each one, decide whether it does or does not prove the statement above. If it does not, what statement does it prove?

Proof 1. Consider an arbitrary integer x that is a multiple of 6 . Then, $x=6 k$ for some integer k. Notice that, $x=6 k=3(2 k)$ where $2 k$ is also an integer. Therefore, x is a multiple of 3 .	Proof 2. Consider $x=15$. Then, $15=3(5)$ so x is a multiple of 3 . Now suppose that $15=6 k$ for some integer k (note: $k \neq 0$). Then, $k=15 / 6$, which is not an integer. Therefore, it is impossible that $15=6 k$ for some integer k. This means that 15 is not a multiple of 6 .	Proof 3. Consider an arbitrary number x that is not a multiple of 3. Suppose that this x is a multiple of 6 . Then, $x=6 k$ for some integer k. This implies that $x=3(2 k)$ where $2 k$ is an integer, and therefore x is a multiple of 3 . Since we assumed x is not a multiple of 3 , we may conclude that x cannot be a multiple of 6 .

