
Proving Existence Nonconstructively

Proving that a solution exists doesn't always involve providing the solution itself. this is similar to

Group Task

How might the given theorems be used to prove the following claim?

Suppose that f is differentiable on \mathbb{R} and has two roots. Then, there exists an $x \in \mathbb{R}$ such that f'(x) = 0.

Proof. Assume f is differentiable on R and
has two roots. Then,
$$\exists a, b \in \mathbb{R}^{n}$$
 such that
 $f(a) = 0$ and $f(b) = 0$. Without loss of
generality (WLOG), assume $a < b$. By thm,
since f is diff. On iR , f is also cont on
R. In particular, f is cont. on $[a,b]$,
f is diff on (a,b) , and $f(a) = 0 = f(b)$.
By Rolle's Thm, $\exists x \in (a,b)$ s.t. $f'(x) = 0$.
Note $x \in \mathbb{R}$.

the conclusion

90