$$
\text { Topic } 5 \text { - Functions: Inverses } \quad \forall b \in B, g(b) \in A \text {. }
$$

$$
\begin{aligned}
& \text { Suppose that } f: A \rightarrow B \text { is a function. We say that a function } g: B \rightarrow A \text { is the inverse of } f \\
& \text { provided }
\end{aligned}
$$

about the preimage of any point $b \in B$ under f, ie. $f^{-1}(\{b\})$?
This depicts a noninvertible function

$f^{-1}(\{b\}) \frac{A}{A}$

Answer to 1: B
$f^{-1}(\{b\})$ must contain exactly one $a \in A$.
$b_{1}=b_{2}$ then

$$
g\left(b_{1}\right)=g\left(b_{2}\right) .
$$

(range of f) what if $f^{-1}(\{b\})=\varnothing$?

$$
\text { i.e. } \exists a \in A \text { s.t. } f(a)=6 \text {. }
$$

The inverse of f is supposed to take b back to the $a \in A$ that $f(a)$ mapped to b.
Issue: $g(b)=$??
$\therefore g$ is not defined for b.

Range $f=$ Codoman of f.
Range $f=$ domain g
(1) Given any $b \in B$, we need to be able to send b somewhere in A under g. ie. $g(b)$ must be defined * Requirement: every $b \in B$ must be in range of f.

$$
\begin{array}{cc}
\left.f^{-1}(\{b\}) \neq \oint_{\text {hor }} \text { defile }\right)^{5} & \Rightarrow \text { range }(f)=B \\
& f(A)=B
\end{array}
$$

