Vor B, g(b) A.Impose that
$$f: A \rightarrow B$$
 is a function. We say that a function $g: B \rightarrow A$ is the inverse of f Suppose that $f: A \rightarrow B$ is a function. We say that a function $g: B \rightarrow A$ is the inverse of f I a g (f(a)) = a Var A and2 f (g(b)) = b Vb $\in B$ 1 a g (f(a)) = b Vb $\in B$ 1 a g (f(a)) = b Vb $\in B$ 1 a g (f(a)) = b Vb $\in B$ 1 a g (f(a)) = b Vb $\in B$ 1 a consider the function $f: A \rightarrow B$. For f to be invertible, what can you say must be true about the presume of any point $b \in B$ under f_1 i.e. $f^{-1}(\{b\})$ 1 a consider the function $f: A \rightarrow B$. For f to be invertible, what can you say must be true about the presume of any point $b \in B$ under f_1 i.e. $f^{-1}(\{b\})$ 1 a consider the function $f: A \rightarrow B$. For f to be invertible, what can you say must be true about the presume of any point $b \in B$ under f_1 i.e. $f^{-1}(\{b\})$ 1 a consider the function $f: A \rightarrow B$. For f to be invertible, what can you say must be true about the presume of any point $b \in B$ under f_1 i.e. $f^{-1}(\{b\})$ 1 a consider the function $f: A \rightarrow B$. For f to be invertible, $f^{-1}(\{b\})$ 1 a constant to the formation $f = f(A) = B$ 1 a constant to the formation $f = f(A) = B$ 1 a constant to the constant to the inverse of f is supposed to b.1 a constant to the defined $f(a) = B$ 1 a constant to the question 1^2 2 whene properties mage f is a become any on described in question 1^2 2 whene properties mage f is a become and f is a constant of $f(A) = B$ 2 whene properties mage f is a become and f is a constant of $f(A) = B$ 2 a constant $f = f(A) = B$ 3 a constant $f = f(A) = B$