## Proving Existence Constructively

Consider the statement:
There exists a positive integer $x$ such that $x^{3}-4 x^{2}-x+4=0$.
For each proof below, decide whether it does or does not prove this statement.

Proof 1. Suppose that $x^{3}-4 x^{2}-x+4=0$. Then,

$$
\begin{aligned}
x^{2}(x-4)-(x-4) & =0 \\
(x-4)\left(x^{2}-1\right) & =0
\end{aligned}
$$

So, $x=4$ or $x= \pm 1$. Since $x=1$ is a positive integer, the claim is true.

Proof 2. Let $x=1$. Then,

$$
\begin{aligned}
x^{3}-4 x^{2}-x+4 & =(1)^{3}-4(1)^{2}-(1)+4 \\
& =1-4-1+4 \\
& =0
\end{aligned}
$$

So, the claim is true.

