Overview

The Department of Mathematics at Virginia Tech offers graduate programs leading to the Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees. This guide is intended to provide concise descriptions of the programs, degree requirements, and department policies affecting graduate students. The Graduate School sets minimum requirements for each of the degrees and various rules and procedures for completing them. The Department of Mathematics prescribes additional requirements and policies for degrees in Mathematics. This document describes the departmental requirements. See the Graduate Policies and Procedures and Course Catalogue for a complete description of the requirements set by the Graduate School. Some general policies regarding Graduate Teaching Assistantship (GTA) positions are also described below. However a more complete guide to the responsibilities of a GTA is provided in the Graduate Teaching Assistant Manual.

There are sometimes circumstances which justify the waiver of some requirement or policy. The authority to waive Department of Mathematics policies rests with the Graduate Program Committee. Such requests should be made to the Graduate Program Director in writing after consultation with the student’s advisor. For waivers of Graduate School rules, requests should be made to the Dean of Graduate Studies, often accompanied by a letter from the student’s advisor or the Graduate Program Director. If you have questions, start with your advisor or the Graduate Program Director.

Throughout the year, policy changes and updates are provided through electronic mailings and information sessions such as the Graduate Student Issues Seminar, coordinated by the Senior GTAs. It is every student’s responsibility to check their e-mail and mailboxes regularly for announcements.

Advising & General Requirements

Fall Orientation

The Department provides an orientation programs for new graduate students prior to the first week of classes every fall and spring semester. Students on a GTA must attend a mandatory GTA Workshop offered by the Graduate School. You should receive information about orientation over the summer for the fall program and late December for the spring program from the Graduate Program Coordinator.
Advisor and Advisory Committee

Each new graduate student in the M.S. program is assigned a faculty member as their advisor. A student may change their advisor to a different Mathematics faculty member if they wish. After receiving the consent of the new advisor, the student should inform the previous advisor, the Graduate Program Coordinator, and the Graduate Program Director and be sure to note the change on the next Graduate Student Activity Report (GSAR). The advisor helps the student design their Plan of Study and make any associated decisions. In the student’s first year the M.S. student and advisor select an advisory committee of 3 faculty members to help develop a M.S. Plan of Study.

A student in the Ph.D. program is expected to take their own initiative to identify an advisor. Often this involves a period of discussion of research interests and working styles. Advisors should be tenured or tenure-track faculty members with expertise suitable for the student’s research area. Once an agreement is reached with an advisor, a committee of 4 faculty members is identified to help develop the Ph.D. Plan of Study.

A majority of advisory committee members should be mathematics faculty holding tenure track appointments. (Exceptions to this are possible with the Graduate Program Committee’s approval.) The advisory committee provides advice and review of the Plan of Study and any subsequent revisions. Committee members also provide consultation and advice for the student’s research. For M.S. students, the advisory committee administers the final exam (either Master's Thesis, Master's Presentation, or written Ph.D. Preliminary Exam options, see below). For Ph.D. students, the advisory committee members conduct the oral Preliminary Examination (see below), the final exam and certification of any additional requirements.

As allowed by the Graduate School policies, the faculty advisor can allow for substitute members or proxies at the time of Doctoral or Master’s examinations, if appropriate. However, it is the responsibility of the student’s Advisory Committee to evaluate Theses or Dissertations and to sign the ETD Approval Form.

The Graduate Program Committee oversees all advisory committees and student-advisor relationships, and has the authority to make changes to committee memberships if necessary. Students and faculty may discuss related issues with the Graduate Program Director and/or Department Head at any time.

Graduate students should consult with their advisors on a regular basis, ideally weekly throughout the semester, including the time of course registration, and additionally whenever any Plan of Study changes are contemplated. It is the student’s responsibility to contact their advisor and to satisfy all degree requirements. Although the advisor’s role is only to provide guidance, it is strongly recommended that students take advantage of faculty advice and involve it in their study plans. This can often eliminate delays in completing a student’s program requirements.

Plan of Study

The Plan of Study form is due by the end of the second academic semester for all Master’s students, at the time of application for the Accelerated Undergraduate/Graduate degree students, and by the end of the third academic semester for all doctoral students. Guidance in preparing Plan of Study forms for M.S. and Ph.D. programs are given below.

Evaluation of transfer credit (if any) is made in the process of developing the Plan of Study. Transferred credits must have earned grades of “B” or better and must have been earned while registered as a Graduate Student. As outlined in the Graduate School guidelines, no more than 50% of course credits listed on a

1The evaluation of faculty in their role as advisors and advisory committee members is the responsibility of the Personnel Committee.

2An exception is made for students admitted to the Accelerated Undergraduate/Graduate degree program. Credits must be earned at Virginia Tech after acceptance to the program.
Plan of Study may be transferred. The Department requires that all transfer courses be at the 5000 level or higher.

Once approved by the Advisory Committee the Plan of Study is reviewed by the Graduate Program Director for departmental approval and then by the Graduate School. If changes become necessary, we strongly recommend that they all be made at one time, usually before the student’s final semester. Full time students not engaged in thesis projects are expected to enroll in 9 hours of course work per semester (students on assistantships typically add MATH 5994 (M.S.) or 7994 (Ph.D.) credits to meet the requirement of 12 hours per semester). All courses on the Plan of Study must be taken with the A/F option except 5994 or 7994. Students should maintain a QCA of at least 3.0.

Attending Colloquia and Seminars

The department expects every graduate student to attend colloquia and/or seminars at least 6 times each semester. The student may choose among Math Department colloquia and seminars and math-related colloquia and seminars in other departments. Graduate students are expected to attend Research Days, an annual event held in February, where faculty members give short presentations on their research areas.

The Graduate Student Activity Report includes a section in which the student reports the seminars and colloquia attended and in which the student’s advisor signs off on the accuracy of the reported attendance. The department suggests that advisors engage their students in discussions of seminars and colloquia attended by the students and/or require their students to submit brief written summaries. Because colloquium and seminar attendance is important for students' professional development, it will be considered when the Graduate Program Committee makes decisions about admission to the Ph.D. program and extensions of support.

Scholarly Ethics and Integrity

The department encourages every first-year graduate student to attend lunch-time seminars on scholarly ethics and integrity for graduate students organized by senior graduate teaching assistants. The first-year graduate student must attend the lectures on ethics and integrity given by faculty members during Research Days. At the end of spring semester, every first-year graduate student must take an exam on ethics and integrity. The Graduate Program Committee will be in charge of forming relevant questions and discussion topics. Any student who fails attending the lectures or the exam will be required to repeat the entire exercise in the following year.

The Graduate Student Activity Report includes a section which indicates whether the student has met the ethics and integrity requirement. Meeting this requirement will be required before any degree is conferred.

Graduate Student Activity Report

Near the end of every fall, every continuing graduate student must fill out a Graduate Student Activity Report (GSAR). On this document the student summarizes their academic and GTA activities for the year and indicates plans for the year ahead. The information provided is important for an annual evaluation by the Graduate Program Committee. It is also the vehicle by which a student registers the intent to take preliminary examinations, requests summer teaching assignments, and applies for admission to the Ph.D. program from the M.S. program.
Master of Science Degree Programs

The M.S. program is designed to be completed in two years of graduate study. The degree has two options, thesis and non-thesis. Under the thesis option the student writes and defends a Master’s Thesis under the direction of a faculty member. The time spent preparing the thesis is represented by 6 to 9 hours of Math 5994 (Research and Thesis) among the required courses. The hour and course requirements for each of these degrees are specified in the table below. The department also offers a special interdisciplinary plan for either the thesis or non-thesis master of science degrees. This plan is intended for students having clearly defined interdisciplinary career goals. Additional flexibility in the formal requirements allows the student’s advisory committee to customize a Plan of Study to the student’s goals. It must be emphasized that the interdisciplinary plan is intended only for students who enter the graduate program with specific, interdisciplinary career objectives. The student desiring studies under this plan needs to take the initiative to develop an appropriate plan of study at the very outset of their graduate studies.

Hour Requirements

For any of the degree options the student’s Plan of Study must show 30 hours. The courses which make up these 30 hours must meet the constraints indicated in the following table. (Up to 50% of course credit hours at the 5000 level may be transferred, subject to the advisory committee’s approval and Graduate School guidelines.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>at most 6</td>
<td>at most 6</td>
<td>at most 6</td>
<td>at most 6</td>
</tr>
<tr>
<td>5000 Math (only)</td>
<td>at least 18</td>
<td>at least 18</td>
<td>at least 12</td>
<td>at least 12</td>
</tr>
<tr>
<td>5000 Math or Related</td>
<td>at least 24</td>
<td>at least 24</td>
<td>at least 15</td>
<td></td>
</tr>
<tr>
<td>5000 (any, excluding 5994)</td>
<td>at least 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5994</td>
<td>0</td>
<td>0</td>
<td>6 to 9</td>
<td>6 to 9</td>
</tr>
<tr>
<td>5000 overall (incl. 5994)</td>
<td></td>
<td>(at least 24)</td>
<td>(at least 24)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Explanation of Course Categories (these categories are not mutually exclusive):

5000 Math (only): This refers exclusively to Mathematics courses numbered 5000 or higher, excluding 5994 and 5974. Graduate courses offered by other departments may not be used here, unless cross-listed as Mathematics courses.

5000 Math or Related: This refers to courses which are numbered 5000 or higher either in the Mathematics Department or from other departments, and which are mathematically related in the judgment of the student’s advisor and committee. 5994 and 5974 are excluded.

5000 (any, excluding 5994): This refers to any courses numbered 5000 or higher, but not including 5994. Hours of 5994 may not be part of the required 30 hours for a non-thesis degree.

5994: Most students take many more than 9 hours of 5994. Only for thesis degrees may such hours be included in the required 30.

5000 overall (incl. 5994): This refers to any courses numbered 5000 or higher, including 5994.
Course Requirements

Standard Degree:

The specific selection of courses used on the Plan of Study is formulated by the student and their advisor, and must be approved by the student’s advisory committee and the Graduate Program Director. The Mathematics Department requires that the selected courses meet the following two criteria.

A. The M.S. program has three background requirements, which can be passed by previous coursework or by courses taken while in the M.S. program.
 - If a student has not previously passed a year of analysis equivalent to VT Math 4225-4226, the student must pass Math 4225-4226.
 - If a student has not previously passed a semester of algebra equivalent to the VT Math 4000 level or higher, the student must pass Abstract Algebra (5125) or Introduction to Abstract Algebra (4124). 5125 is recommended.
 - If a student has not successfully engaged in computation in a significant way (including developing an algorithm, coding it into software, and then using it to solve a problem), the student must do so while in the M.S. program. Courses that provide this experience include 4445, 4446, 4414, 5465, 5466, 5424, 5485, 5486, 5554, or appropriate Computer Science courses.

B. Concentration. The Plan of Study must include a pair of courses from a single one of the following course sequences or clusters.
 - Abstract Algebra (5125-5126)
 - Calculus of Variations (5545-5546)
 - Analysis (5225, 5226, 5235, 5236, 6255, 6256, 5214 (only if topic is functional analysis) may be included. 5214 may not be paired with 6255 to satisfy this cluster requirement.)
 - Computational Math (5424, 5465, 5466, 5474, 5484, 5554. To satisfy this cluster requirement, 5424 may not be paired with 5465, and 5554 may not be paired with 5466.)
 - Differential Equations (5245, 5246, 5245, 5426)
 - Mathematical Methods for Modeling and Simulation of Biological Systems (5515-5516)

Interdisciplinary Plan:

The interdisciplinary plan is intended (only) for students having clearly defined, interdisciplinary career goals that cannot be adequately served under the course requirements for the standard degree options above. Instead the student’s advisory committee (which should include at least one faculty member from the related discipline) designs a plan of study that combines a core of mathematics study with a coherent selection of course work from a related discipline and that is tailored to the student’s specific interdisciplinary goals. (For example, an interdisciplinary degree in bioinformatics might require advanced work in biology, statistics, and/or computer science in addition to graduate work in mathematics.) The judgments of how to make a coherent choice of courses from more than one discipline, while ensuring a level of quality comparable to the level of the standard degree options, are entrusted to the committee. The only specific course requirement is that the plan of study includes Elementary Real Analysis 4225, 4226 if the student has not previously had its equivalent.

It is important that the student interested in this option take the initiative to form the advisory committee and plan a program of courses at the very beginning of their graduate studies. This option is not intended for students seeking general training in applied mathematics, and should not be used to circumvent the standard requirements for students who properly belong in one of the standard options.
Final Examinations:

All graduate degrees require the completion of a final examination. The examination must be scheduled with the Graduate School at least two weeks prior to the date of the examination itself. For students in the thesis option, the final examination is a “thesis defense,” i.e. an oral presentation of the thesis and response to questions from the student’s committee. For students in the non-thesis option the department requires the completion of a Master’s Presentation (described in a separate document). Alternatively, the Department will accept the completion of two Ph.D. preliminary examinations as satisfaction of the final exam requirement. In general preliminary exams of the old type may be combined with exams of the new type (see below for descriptions of these exams), but the following combinations cannot be used. A student cannot combine old algebra with new algebra. A student cannot combine old real analysis, complex analysis, or functional analysis with new analysis. A student cannot combine old ordinary differential equations or applied partial differential equations with new differential equations. A student cannot combine old numerical analysis or numerical methods for pdes with new computational math.

Interdisciplinary plan students take an exam (usually oral) designed and administered by their advisory committee. For all M.S. options, final exam paperwork must be submitted to the Mathematics Department for forwarding to the Graduate School.

Doctoral Programs

The Ph.D. program is intended to provide a level of training and knowledge suitable for advanced, independent research. In completing the program the student moves beyond the relatively passive role of receiving knowledge presented in courses to become an active, self-motivated scholar. The doctoral program is designed, therefore, for those with the talent and determination to achieve this level of fluency in advanced mathematics. The Mathematics Department offers a Doctor of Philosophy degree under two plans: mathematics and mathematical physics.

A full-time graduate student working for a Ph.D. should expect to complete the doctorate within four years after the Master’s degree. Permission from the Graduate School is required for residency extending beyond seven years.

Entry to the Doctoral Program:

Students in their second year of the M.S. program may apply for admission to the Ph.D. program. These applications are evaluated by the Graduate Program Committee, using such criteria as performance in the M.S. program, progress toward completion of Ph.D. preliminary examinations, and faculty recommendations on the student’s preparedness for doctoral studies. The endorsement of a faculty member who is willing to chair the student’s advisory committee and direct the student’s dissertation is a major consideration.

Hour Requirements:

The Ph.D. requires the completion of 90 hours, of which between 30 and 60 must be research and dissertation (7994). At least 27 hours must be mathematics courses (excluding research and dissertation) numbered 5000 or higher. Up to 50% of these 5000 or higher course hours can be transferred, subject to the advisory committee’s approval and Graduate School guidelines. Courses used toward a M.S. in mathematics may be used toward a Ph.D. as well.
Course Requirements:

There are no specific course requirements for the Ph.D. degree. The actual selection of courses is the prerogative of the student’s advisory committee. However the intent is that each program be broadly based. The following recommendations are offered for each of the two program options.

Mathematics: It is strongly recommended that each student have the following courses or their equivalent in their background.

- (Introduction to) Abstract Algebra MATH 5125 (or 4124)
- Elementary Real Analysis MATH 4225-4226
- Elementary Complex Analysis MATH 4234
- Elementary Topology MATH 4324

Mathematical Physics: The Ph.D. option in mathematical physics is offered jointly by the Mathematics and Physics Departments. This program requires extensive preparation in both mathematics and physics. The student’s background should include the following or their equivalent:

- (Introduction to) Abstract Algebra MATH 5125 (or 4124)
- Elementary Real Analysis MATH 4225-4226

Typical core courses for the program are:

- Real Analysis MATH 5225, 5226
- Functional Analysis MATH 6225, 6256
- Classical Mechanics PHYS 5354
- Classical Electricity and Magnetism PHYS 5405, 5406
- Quantum Mechanics PHYS 5455, 5456

A sequence (listed under both Math and Physics) that is usually taken concurrent with the student’s research is: Mathematical Foundations of Quantum Mechanics PHYS 6755, 6756

Many students also include Abstract Algebra (MATH 5125, 5126), Statistical Mechanics (PHYS 5705, 5706), or one of the applied math sequences 5245, 5246; 5425, 5426; 5435, 5436 in their plans of study.

Bioinformatics: The university’s Ph.D. program in Genomics, Bioinformatics, and Computational Biology (GBCB) is distinct from the Mathematics Ph.D. program. Math students may choose to concentrate on one or more of those fields while pursuing a Ph.D. in Mathematics. To enter the GBCB Ph.D. program students should apply through the Graduate School.

Preliminary Examinations:

The Mathematics Department employs written preliminary examinations to help insure the level of preparation of doctoral candidates.

Preliminary examinations are given twice a year, once in the summer and once before the beginning of the Spring semester. A student who does not pass a given examination on the initial attempt is permitted to be re-examined once more at a later date; but a student may not substitute an examination on a different topic for one the student has previously failed.

After successful completion of the written examinations, the student must take a comprehensive oral examination, administered by the student’s advisory committee. Under ordinary circumstances, a doctoral candidate is expected to take this oral examination before the start of the third year after entering the Ph.D. program.
Preliminary Examinations (“old system" available to students with VT Math graduate credits prior to fall 2019):

No exam of the old type will be offered later than winter 2021. Each candidate is required to take and pass written examinations in three fields closely allied with the student’s plan of study or to take and pass two such examinations in addition to writing and successfully defending a M.S. thesis in Mathematics at Virginia Tech. The available examination topics are

- Abstract Algebra
- Calculus of Variations and Optimal Control
- Complex Analysis
- Functional Analysis
- Numerical Analysis
- Ordinary Differential Equations
- Real Analysis
- Applied PDEs
- Numerical Methods for PDEs
- Mathematical Methods for Modeling and Simulation of Biological Systems

(An exam in Topology has also been offered, although suitable preparation for this topic requires some individual study beyond existing courses. An exam in Mathematics Education has been offered recently.)

Preliminary Examinations (“new system" for students with no VT Math graduate credits prior to fall 2019; available to most other VT Math students - see Transition discussion below):

Exams of the new type will first be offered in summer 2020. Thereafter they will be offered each summer (usually August) and winter (usually January), just as on the current schedule.

The department will offer four written preliminary exams. Each Ph.D. student will be required to pass two of these exams. The four exams will be in the areas of:

- Analysis
- Algebra
- Computational Mathematics
- Differential Equations

On each exam, questions will be about topics selected from announced lists of topics that will not change from year to year unless changes are approved by the GPC. In each area there will be 2-4 one-semester courses that together cover all the topics on the area’s list. The courses relevant to each exam are as follows.
• Analysis exam - based on 5225 real analysis (fall), 5235 complex analysis (spring), one semester of functional analysis (5214 when topic is functional analysis or 6255) (functional analysis semesters will vary; there is a tentative schedule).

• Algebra exam - based on 5125 (fall), 5126 (spring). These courses will differ somewhat from the versions taught in AY 2018-2019.

• Computational math exam - based on 5424 new course in numerical linear algebra (fall), 5554 new course in approximation theory (spring), 5484 finite elements (spring). Later a new course on mathematical optimization will be added.

• Differential equations exam - based on 5245 ODE (fall), 5425 Applied PDE (spring). Later a third course (probably related to dynamical systems) may be added.

In each area, every year the department will teach at least two of the courses associated with the area’s exam. Exams will include enough question choice that, on an exam where the student is expected to answer (for example) six questions, a student who has taken any two of the relevant courses will encounter six questions about topics covered in those two courses. These written preliminary exams are intended to test knowledge of when and how to use standard lines of reasoning that are widely regarded as fundamental. These exams will not address evaluation and development of the student’s aptitude for research or more advanced preparation for specific research topics. The student’s advisory committee will find other methods, including the formal preliminary exam (comprehensive oral examination) required by the Graduate School, to develop and evaluate research aptitude and advanced preparation.

Preliminary Examinations (Transition option available to most students with VT Math graduate credits prior to fall 2019 - see following text for details):

During fall 2019, after all summer 2019 exam results have been distributed, each continuing student (student with VT Math graduate credit prior to fall 2019) will be required to commit to one of the two paths through written prelims: a (stay in the old written prelim system) or b (switch to the new written prelim system) as described below. Students will be free to choose a path, except in the following circumstances. A student who has passed three written prelims will have passed our department’s written prelim requirement and will have no need to switch. A student who has twice failed any subject’s written prelim will have failed our department’s written prelim requirement and will be ineligible to switch. A student who has not failed our department’s written prelim requirement but who has fails on the student’s most recent attempts at two or more prelims will be allowed to switch only if that student requests and receives the GPC’s permission to switch. The deadline for this request will be the same as the deadline for commitment to one of the paths. If the GPC approves such a student’s request, the GPC will set the terms under which the student can pass the department’s written prelim requirement.

a. Continuing student stays in the old system. Pass three exams (or two plus a VT Math M.S. thesis) subject to all the rules that apply in the old system. In general exams of the old type may be combined with exams of the new type, but the following combinations cannot be used. A student cannot combine old algebra with new algebra. A student cannot combine one or more of old real analysis, complex analysis, or functional analysis with new analysis. A student cannot combine one or more of old ordinary differential equations or applied partial differential equations with new differential equations. A student cannot combine one or more of old numerical analysis or numerical methods for pdes with new computational math.

b. Continuing student switches to the new system. For continuing students who, without needing GPC special permission, choose to switch to the new system, some of the implications of passed and failed exams change, and the standards for passing the department’s written prelim requirement are as follows.

There will be seven subject boxes:
1. algebra - contains the old and new algebra exams.

2. analysis - contains the old real analysis, old complex analysis, old functional analysis, and new analysis exams.

3. computational math - contains the old numerical analysis, old numerical methods for pdes, and new computational math exams.

5. calculus of variations and optimal control - contains the old calculus of variations and optimal control exam.

6. mathematical biology - contains the old math bio exam.

7. math education - contains the old math ed exam.

All passes and fails through August 2019 will be swept into their appropriate boxes. The standard for passing the department’s written prelim requirement will be having a pass in each of two boxes.

If, at the time of the switch, the student has a pass in each of two boxes, the student will have passed the department’s written prelim exam requirement. Otherwise, retaining credit for the boxes in which the student has passes, the student must increase the number of boxes containing passes to two by taking new-system prelim exams under the new-system prelim exam rules: if a student attempts a new-system exam in a subject, the student must pass the exam in that subject and must do so on the first or second attempt. There is one exception to eligibility for two attempts, and, other than advisor’s expectations, there is only one constraint on the student’s choice of new-system exams. The exception and the constraint are the same: if, in any of boxes 1, 2, 3, or 4, the student has a failed exam and no passed exam, the student must take the new-system exam in that box and must pass it on the first attempt.

Dissertation:

The dissertation is the centerpiece of the Ph.D.–it is the fundamental research experience that doctoral studies lead to. Students should start considering possible thesis advisors as soon as they enter the Ph.D. program. The process of identifying a thesis advisor will involve some discussion of research interests and perhaps a period of interaction allowing the student and potential advisor to become familiar with each other before an agreement to work together is reached. Once an agreement is reached with an advisor, an advisory committee is formed to oversee the writing of the doctoral dissertation and to judge its acceptability. The doctoral candidate will be expected to enroll in Math 7994 whenever actively engaged in dissertation research/writing.

The dissertation project takes the student beyond the relatively passive role of receiving knowledge presented in courses to become an active, self-motivated scholar. The doctoral student becomes responsible for their own mastery of a research topic to the point of making an original and significant contribution to it. The student’s advisor provides guidance and advice as appropriate for the student’s project. The scope of this guidance includes formulating the goals of the project, choice and use of research methods, making the various judgments that arise in the course of the project and preparation of the final thesis according to appropriate standards. The work of the dissertation is expected to be of such quality as to merit publication in a scholarly journal, after appropriate revisions. When the dissertation research and writing are completed, a doctoral candidate must defend the thesis at a final oral examination. It should be noted that this final examination is open to the entire faculty of the university and that questions may be asked that do not pertain directly to the thesis being defended.
Additional Requirements:

The student’s advisory committee may prescribe additional requirements beyond the above course and examination requirements. These may include reading proficiency in a foreign language, competency with particular computer languages or software tools, specific course requirements in addition to those described above, and/or whatever other training, skills, or experiences the committee judges to be important to the candidate’s chosen research direction and career plans. Such additional requirements should be stipulated in writing at the time of submission of the student’s plan of study with signatures of all members of the advisory committee as well as the student. Changes to these requirements will require the consent of the advisory committee, following the same rules as for changes to the plan of study itself.

Assistantships

Most graduate students in the Mathematics Department are supported by a graduate teaching assistantship (GTA) or other kinds of assistantships. Except in special circumstances, these are awarded during the winter and spring for the following academic year and are continued each year that satisfactory progress is made toward the degree. An annual evaluation of students’ progress is made by the Graduate Program Committee during the winter. Several rules and policies applying to those holding assistantships are described below.

Students must enroll for 12 hours while on an assistantship for the Fall and Spring Semesters. (There are no hour requirements for students on assistantships during summer sessions.) Students not engaged in thesis projects are expected to enroll in 9 hours of course work per semester, and an additional 3 hours of research and thesis to complete the 12 hours. (This applies even to students on a non-thesis plan.) Students on GTAs must keep their grade point average above 3.0.

Students making satisfactory progress are normally allowed GTA support for 2 years of work in the M.S. program and 4 years of work in the Ph.D. program. Support beyond these periods is only granted by special permission of the Graduate Program Committee.

A GTA is an employee of the Mathematics Department and must follow the guidelines set by the Department for performance of their duties. All GTAs are expected to complete the Department’s teaching certification process during their first year in the program. Those who fail to complete teaching certification by the end of the first year or who fail to demonstrate the skills and work habits necessary for satisfactory performance as a GTA risk losing financial support. The Graduate School imposes additional certification requirements for international students. The Graduate Teaching Assistant Manual contains more on the departmental certification process and guidelines.

Graduate Assistants who have not completed the teaching certification process are generally given assisting duties with an instructor of a large class, in one of the Department’s tutoring or computer labs, or in the Math Emporium. Graduate Assistants who have completed the teaching certification process may be assigned to teach their own classes under the supervision of the GTA Coordinator. The usual teaching load is one class during Fall and one class during Spring. Graduate Assistants who are teaching for the first and second time are assigned a faculty mentor who will observe the class a few times, review tests and grades, and provide a written evaluation to the GTA Coordinator at the end of the semester. After two semesters of teaching experience, GTAs who are teaching participate in the peer mentor program administered by the senior GTAs. Both the faculty mentor program and the peer mentor program are overseen by the GTA Coordinator, who observes every teacher in the classroom, reviews mid-term and end-of-semester student evaluations, and provides support for all aspects of a GTA’s teaching responsibilities. Graduate Assistants who will be teaching for the first time should plan to come to campus one week before the start of classes in

3GTAs beyond their first year who have not passed the teaching certification or who are not teaching will be given increased duties to ensure that their workload is no less than that of a GTA who is assigned to teach.
August to participate in a teaching orientation and training workshop as required by the Graduate School and the terms of the GTA agreement. In addition to the academic year assistantships, there are a limited number of positions in the summer. Graduate students may apply to teach or assist in one class during the summer.

Each year every graduate student fills out a Graduate Student Activity Report. On this document the student summarizes their academic and GTA activities for the year and indicates plans for the year ahead. The information provided is important for the annual evaluation by the Graduate Program Committee. It is also the vehicle by which a student registers the intent to take preliminary examinations, requests summer teaching assignments, and applies for admission to the Ph.D. program from the M.S. program.

Other Publications

Other publications with important information for graduate students and GTAs are the following:

- Graduate Policies and Procedures and Course Catalogue (Virginia Tech) (www.graduateschool.vt.edu/graduate_catalog)
- Introduction to Graduate Study in Mathematics: Advanced Degree Programs at Virginia Tech (Department of Mathematics) (www.math.vt.edu/grGeneralInfo.php)
- The Graduate Teaching Assistant Manual (Department of Mathematics, see link to SGTA Homepage under “Graduate Program” at www.math.vt.edu)
- Master’s Presentation Guidelines (Department of Mathematics) (www.math.vt.edu/people/day/advice/MSpres(20120214).pdf)
- Teaching Mathematics: A Handbook for Graduate Teaching Assistants

Contact Information

Department of Mathematics:

460 McBryde Hall (540) 231-6536
Virginia Tech info@math.vt.edu
Blacksburg, VA 24061-0123
www.math.vt.edu

Graduate School:

Graduate Life Center (540) 231-6691
Virginia Tech www.graduateschool.vt.edu
Blacksburg, VA 24061-0325

University Non-discrimination Statement: Virginia Tech does not discriminate against employees, students, or applicants for admission or employment on the basis of race, gender, disability, age, veteran status, national origin, religion, sexual orientation, or political affiliation. Anyone having questions concerning discrimination should contact the Office for Equity and Inclusion at (540) 231-7500.