Math 1225 Syllabus - SPRING 2024
Calculus: Early Transcendentals, 9th Edition, by James Stewart, with WebAssign Access

Week		Day	Section	Topic	Textbook	WebAssign (for Reference)
Week 1		1		MLK Day		
		2		Introduction to Calculus		
		3	2.2	The Limit of a Function (limits using numerical approximations, graphs, one-sided limits)	p. 92 \# 1, 2, 11, 15, 16	\# 6, 7, 9
		4	2.2	The Limit of a Function (Infinite Limits, VA)	$\begin{aligned} & \text { p. } 94 \# 3,30,31,33,36,37,40,42 a, 51 \\ & \text { Find V.A.(s) of } f(x)=\left(x^{\wedge} 2+5 x+6\right) /\left(x^{\wedge} 2+2 x-3\right) \end{aligned}$	\# 31, 37, 40
Week 2 Test 0	$\begin{aligned} & \stackrel{\text { N }}{N} \\ & \text { N } \\ & \text { N } \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$	1	2.3	Calculating Limits Using the Limit Laws (Limit Laws, Graphical Limits)	p. 103 \#52, 61, 62, 64 p. 167 T/F \# 1-3, 6-9, 11	\# 1, 2, 53
		2	2.3	Calculating Limits Using the Limit Laws (Factoring, Trig Limits, Rationalizing) *Note trig limits can be found in Section 3.3	$\begin{aligned} & \text { p. } 103 \# 10,16,19,29,31 \\ & \text { p. } 198 \# 45,52,54,60 \\ & \text { p. } 167 \text { T/F \# 4, 5, } 10 \end{aligned}$	$\begin{aligned} & \text { 2.3: \# 2, 13, 15, } 23 \\ & \text { 3.3: \# 45, 51, } 60 \end{aligned}$
		3	2.3	Calculating Limits Using the Limit Laws (Absolute Values, Squeeze Theorem)	$\begin{aligned} & \text { p. } 103 \text { \# 39, 41, 42, 44, 45, 47, 48, } 49 \\ & \text { p. } 171 \text { \# } 3 \end{aligned}$	\# 43, 51, 54
		4	2.5	Continuity (Left/Right Continuous, Functions Continuous on Their Domains)	p. 124 \# 9, 20, 22, 23, 50 p. 167 T/F \# 24, 25	\# 6, 12, 22
			W	Test 0 [Sections 2.2, 2.3 (Day 1 \& Day 2)]		
Week 3		1	2.5	Continuity (Intermediate Value Theorem)	$\begin{aligned} & \text { p. } 126 \text { \# 52, 54, 55, 58, } 70 \\ & \text { p. } 167 \text { T/F \# 17, } 23 \\ & \text { p. } 168 \text { \# 34; p. } 172 \text { \# } 8 \end{aligned}$	\# 57, 63
		2	2.5	Continuity (Continuous Extensions, Continuity of Piecewise Functions)	p. 125 \# 42, 44, 47, 48, 49 Supplementary Problems (2.5)	\# 45, 48
		3	2.6	Limits at Infinity; Horizontal Asympotes	p. 137 \# 4, 8, 18	\# 3, 17, 51
		4	2.6	Limits at Infinity; Horizontal Asympotes	$\begin{aligned} & \text { p. } 137 \text { \#25, 26, 30, 36, 52, 55, 58, 59, 65a } \\ & \text { p. } 167 \text { T/F \# 12, } 13 \end{aligned}$	\# 67, 68
Week 4	$\begin{aligned} & 0 \\ & 10 \\ & 10 \\ & 0 \\ & \hline 1 \end{aligned}$	1	2.7	Derivatives and Rates of Change	$\begin{aligned} & \hline \text { p. } 149 \text { \# 5, 8, 13, 18, 34, 36, 43, } 44 \\ & \text { p. } 167 \text { T/F \# } 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \# 8,11,15,17,36,51, \\ & 55 \end{aligned}$
		2	2.8	The Derivative as a Function \& Review	$\begin{aligned} & \text { p. } 163 \text { \# 23, 29, 32, 40, 42, 49, 57, } 65 \\ & \text { p. } 167 \text { T/F \# 21, } 22 \\ & \text { p. } 170 \text { \# } 51 \end{aligned}$	\# 3, 16, 41
		3	3.1	Derivatives of Polynomials and Exponentials	$\begin{aligned} & \text { p. } 181 \# 10,21,22,25,28,29,41,59,61,63, \\ & 70,80,81,85 \\ & \text { p. } 269 \text { T/F \# 1, 6, 7, 11, 14, } 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \# 12,21,33,41,50, \\ & 51,56,70 \end{aligned}$
		4	3.2	The Product and Quotient Rules	$\begin{aligned} & \text { p. } 188 \text { \# 6, 10, 23, 24, 29, 31, 37, 47, 48, 50, } \\ & 63 \\ & \text { p. } 269 \text { T/F \# 2, } 13 \end{aligned}$	$\begin{aligned} & \# 7,17,30,33,45,51 \text {, } \\ & 59 \end{aligned}$
Week 5 Test 1		1	M	Test 1 [Sections 2.2, 2.3, 2.5, 2.6, 2.7, 2.8]		
		2	3.3	Derivatives of Trigonometric Functions	$\begin{aligned} & \text { p.197 \# 4, 9, 19, 24, 29, 38, } 39 \text { (on [0,2п]), 45, } \\ & 49,52,54,56,58,60 \end{aligned}$	\# 7,15, 29, 61
		3	3.4	The Chain Rule	p. 206 \# 3, 5, 29, 30, 32, 35, 38, 43	\# 6, 7, 13, 22, 41, 51,
		4	3.4	The Chain Rule	$\begin{aligned} & \text { p. } 207 \# 65,67,71,80,83,92,93,98 a, b \\ & \text { p. } 275 \# 18,20 \\ & \text { p. } 269 \text { T/F \# 9, 10, } 12 \\ & \hline \end{aligned}$	\# 69, 77, 91
Week 6		1	3.5	Implicit Differentiation	p. 215 \# 10, 14, 20, 26, 27, 35, 40, 43, 62a	\# 5, 15, 21, 25, 61
		2	3.5	Implicit Differentiation (Inverse Trig Derivatives) *Note that we will cover Inverse Trig Derivatives in Section 3.5 rather than 3.6.	p. 224 \# 64, 66, 75, 76, 81	p. 224 \# 63, 65, 73
		3	3.6	Derivatives of Logarithmic Functions	p. 224 \# 13, 25, 26, 31, 36, 40, 43, 44 p. 269 T/F \# 8	\# 4, 5, 6, 8, 21, 26, 32
		4	3.6	Derivatives of Logarithmic Functions (Log Diff)	p. 224 \# 46, 50, 51, 54, 56, 58	\# 49, 57
Week 7		1	3.9	Related Rates	p. 251 \# 4, 12, 16, 17	\# 6, 9, 12, 13, 50
		2	3.9	Related Rates	p. 251 \# 18, 25, 26, 30, 32, 43	\# 18, 25, 35, 42, 45
		3	3.10	Linear Approximations	p. 258 \# 4, 10, 31, 36, 40a, 52	\# 5, 31, 36, 40
		4				
Spring Break						
Week 8	10	1	4.8	Linear Approximations and Newton's Method	p. 354 \# 3, 11	\# 4, 10, 12

	$\left\lvert\, \begin{aligned} & \frac{\mu}{亡} \\ & \stackrel{\rightharpoonup}{\Gamma} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}\right.$	2	4.8	Newton's Method	p. 354 \# 5, 15, 31	\# 13, 27
		3	4.1	Maximum and Minimum Values	p. 286 \# 10, 11, 28, 34, 41, 51, 82 p. 364 T/F \# 1, 2, 3	\# 5, 30, 39
		4	4.1	Maximum and Minimum Values	Supplementary Exercises	\#57, 59, 63, 73, 74
Week 9 Test 2	$\begin{aligned} & \underset{N}{N} \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\Sigma}{\infty} \end{aligned}$	1	M	Test 2 [Sections 3.1-3.6, 3.9, 3.10, 4.8]		
		2	4.2	The Mean Value Theorem	$\begin{aligned} & \text { p. } 295 \text { \# 3, 10, 13, 14, 23, 25, 41, } 42 \\ & \text { p. } 364 \text { T/F \# } 4 \end{aligned}$	\# 9, 10, 13, 23, 25
		3	4.2	The Mean Value Theorem	p. 296 \# 16, 17, 21, 30, 31	\# 16, 18, 40
		4	4.3	What Derivatives Tell Us about the Shape of a Graph (1st Derivative Test/ Increasing \& Decreasing)	p. 305 \# 8ab, 9, 15, 16	\# 5, 15
Week 10	$\begin{gathered} \stackrel{\sim}{N} \\ \stackrel{N}{N} \\ \stackrel{N}{N} \\ \Sigma \end{gathered}$	1	4.3	What Derivatives Tell Us about the Shape of a Graph (Concavity/POI)	p. 305 \# 7, 20, 33, 34, 36, 45, 88	\# 23, 28, 32, 33, 43
		2	4.5	Summary of Curve Sketching Note: Slant asymptotes are not covered.	p. 327 \#11,12, 14	None
		3	4.5/3.7	Summary of Curve Sketching and Rates of Change in the Natural and Social Sciences (Particle Motion only)	$\begin{aligned} & \text { p. } 327 \text { \#34, 44, 48 } \\ & \text { p. } 365 \text { T/F \# 5, 6, 7, 8, 9, } 10 \end{aligned}$	$\begin{aligned} & \text { 4.1: \# 23, } 27 \\ & \text { 4.5: \#24, } 55 \end{aligned}$
		4	3.7	Rates of Change in the Natural and Social Sciences (Particle Motion only)	$\begin{aligned} & \text { p. } 235 \text { \# 6, 7, 8, } 12 \\ & \text { p. } 271 \text { \# 93 } \\ & \hline \end{aligned}$	\# 1, 5, 7, 8, 9, 10
Week 11	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{\vdots}{c} \end{aligned}$	1	4.7	Optimization Problems	p. 342 \# 5, 19, 25, 33	\# 3, 7, 13, 27
		2	4.7	Optimization Problems	p. 342 \# 40, 41, 54, 60, 71, 78	\# 40, 54
		3	4.9	Antiderivatives (Rules and Differential Equations)	$\begin{aligned} & \text { p. } 361 \# 1,6,9,10,12,13,16,19,20,21,22 \text {, } \\ & 26,40,52,54,55,57,59,60,65,68,72 \\ & \hline \end{aligned}$	$\begin{aligned} & \# 6,9,11,15,17,33 \\ & 36,43,45,71,81 \\ & \hline \end{aligned}$
		4	5.1	Areas and Distances	p. 381 \# 1, 2, 4, 7, 8, 13	\# 9, 11
Week 12 Test 3		1	M	Test 3 [Sections 4.1, 4.2, 4.3, 4.5, 3.7, 4.7]		
		2	5.1	Areas and Distances (sigma notation/limits)	p. 383 \# 16*, 18*, 22, 23, 24 (*Use left endpoints)	\# 15, 19, 22
		3	5.2	The Definite Integral	p. 394 \# 5, 13, 14, 19, 25, 29, 32, 36, 46	\# 1, 7, 12, 21
		4	5.2/5.3	The Definite Integral The Fundamental Theorem of Calculus, Part 1	$\begin{aligned} & \text { p. } 396 \text { \# 52, 53, 58, 61, 63, 65, 68, } 80 \\ & \text { p. } 406 \text { \# 4, 9, 15, } 20 \end{aligned}$	$\begin{aligned} & \text { 5.2: \# 26, 36, 39, 45, } \\ & 57,59,62 \\ & 5.3: \# 3,9,13,15,17 \end{aligned}$
Week 13		1	5.3	The Fundamental Theorem of Calculus, Part 2	p. 406 \# 21, 41, 45, 47, 49, 70, 73, 83, 94	\# 29, 52, 79, 84
		2	5.4	Indefinite Integrals and the Net Change Theorem	$\begin{aligned} & \text { p. } 415 \# 3,14,15,22,35,45,46,52,54,55, \\ & 61,62,71,74 \end{aligned}$	$\begin{aligned} & \# 10,13,15,22,59, \\ & 64,69,72,76 \end{aligned}$
		3	5.5	The Substitution Rule	p. 425 \#10, 22, 35, 42, 46, 54	\# 3, 15, 27, 31, 40, 50
		4	5.5	The Substitution Rule	p. 425 \# 62, 66, 72, 75, 77, 83, 85, 90, 93	\# 61, 65, 68, 73, 87
Week 14 Test 4	$\begin{gathered} \stackrel{0}{N} \\ \underset{N}{N} \\ \stackrel{0}{\mathbf{c}} \end{gathered}$	1		Review \& Catch Up	p. 428 T/F \# 1-20	
		W	W	Test 4 [Sections 4.9, 5.1-5.5]		
		3		Final Exam Review 1		
Week 15		1		Final Exam Review 2		
		2		Final Exam Review 3		
Final Exam		Wed		May 8th 7:45AM - 9:45AM		

