Geometry of Groups

Joe Wells

Research Day, 2023

Contact Info

Location: McBryde 439 or Idego Coffee
Email: joseph.wells@vt.edu
Website: https://math.vt.edu/people/faculty/wells-joseph.html

Translations by (m,n)

For integers m and n, define a function $f_{(m, n)}$ by

$$
f_{(m, n)}(x, y)=(x+m, y+n)
$$

The function takes a point (x, y) in the plane, and translates it m units right, n units up.

Write \mathbf{T}^{2} to mean all possible $\mathrm{f}_{(\mathrm{m}, \mathrm{n})}$ functions. (There are infinitely-many: one for each integer pair)

A fundamental square for $\mathbf{T}^{\mathbf{2}}$

Notice that we can tile the plane by applying all \mathbf{T}^{2} functions to the square with vertices $(0,0)(1,0)(1,1)(0,1)$.

Call this square fundamental. We get one copy of the square for each $\mathrm{f}_{(\mathrm{m}, \mathrm{n})}$.

In this way, we can take something algebraic (functions) and associate it to something geometric (the square).

Reflections in a triangle with angles $\pi / 2, \pi / 4, \pi / 4$

Can we tile the whole plane with triangles if we just keep reflecting over the sides of the triangle?

It turns out that it depends on the angle.

But in this case...

Reflections in a triangle with angles $\pi / 2, \pi / 4, \pi / 4$

... Yes.

Write $\mathbf{R}^{(2,4,4)}$ to represent all possible reflection functions for this triangle.
(There are infinitely-many: one for each triangular tile).

In this way, we can build an algebraic object (a collection of functions) from a geometric object.

Can we answer algebra questions with geometry, and vice

Tiling by $\mathbf{R}^{(2,4,4)}$

Both pictures have squares in them...

Question:

Tiling by T^{2}

Are there collections of functions that are common to both $\mathbf{R}^{(2,4,4)}$

$$
\text { and } \mathrm{T}^{2} ?
$$

4 fundamental squares for \mathbf{T}^{2}

When marking up the sides of the fundamental square for \mathbf{T}^{2}, every square has left/right and top/bottom sides matching.

When marking up the sides of the fundamental triangle for $\mathbf{R}^{(2,4,4)}$, it takes 8 copies in order to form a square whose left/right and

8 fundamental triangles for $\mathbf{R}^{(2,4,4)}$ top/bottom edges exactly match.

This means that both \mathbf{T}^{2} and $\mathbf{R}^{(2,2,4)}$ share the translations by pairs of even integers (m, n). Call this collection of all even translations ET ${ }^{2}$.

Collections of matrices - how to "see" the function overlap

$$
\mathbf{T}^{2}
$$

All matrices of the form

1	0	m
0	1	n
0	0	1

where m, n are integers
E^{2}
All matrices of the form

1	0	m
0	1	n
0	0	1

where m, n are even integers

$$
\mathbf{R}^{(2,2,4)}
$$

All matrices achieved as products of

1	0	0
0	-1	0
0	0	1

-1	0	0
0	1	0
0	0	1

0	-1	1
-1	0	1
0	0	1

More algebra/geometry connections!

These pictures actually tell us something more:

- 4 copies of the T^{2} square inside $E T^{2}$ square means: \boldsymbol{T}^{2} contains 4 copies of $E T^{2}$
- 8 copies of the $\mathbf{R}^{(2,4,4)}$ triangle inside $E T^{2}$ square means:
 $\boldsymbol{R}^{(2,4,4)}$ contains 8 copies of $E T^{2}$

My research, generally

Lie groups

Collections of distance-preserving functions: discrete subgroups of Lie

representation theory

Group presentations for infinite groups can be determined by
fundamental polygons

Finding matrices which
correspond to these geometrically-defined functions

