Integral Notation

The notation for integrals is suggestive and easy to use but invites errors.

In definite integrals such as

\[\int_a^b f(c, y) \, dy \]

the “\(dy \)” identifies \(y \) as the variable of integration. This is a dummy variable that gets “used up” in the integration process, so it is an *illegal expression* for this variable to occur outside the integrand (the boxed area). \(\int_a^b f(c, y) \, dy \) is the most common illegal expression, and usually indicates an error somewhere. It is always graded as wrong.

Indefinite integrals work differently: the notation \(g(c, y) = \int f(c, y) \, dy \) makes sense and is an alternate notation for \(\frac{d}{dy} g(c, y) = f(c, y) \). Here “\(dy \)” identifies the differentiation variable, and the final result is still a function of \(y \).

These differences lead to some differences in techniques. For instance when using substitution to transform an indefinite integral, a new variable is introduced and this information must be carried along. For example

\[\int \cos(x^2) \, 2x \, dx = \int \cos(u) \, du, \text{ where } u = x^2 \]

The integral on the left is a function of \(x \), the one on the right is a function of \(u \), and the “where \(u = x^2 \)” is necessary to relate them. The equation is incomplete without this. This does not arise with definite integrals. See Substitution.

The form \(f(b) - f(a) \) occurs so frequently that there is a notation for it:

\[f \bigg|_a^b = f(b) - f(a) \text{ or } f(x, c) \bigg|_{x=a}^{x=b} = f(b, c) - f(a, c) \]

The second form is used when \(f \) involves several symbols and it may not be clear which is being evaluated. Using this notation the relation between definite and indefinite integrals is written as:

\[\int_a^b f(x) \, dx = \left(\int f \, dx \right) \bigg|_a^b \]