Test 2

• Covers *everything* we have done:
 – Lectures
 – In Class Assignments
 – Lab (but not Excel)

• Der 1090, 7pm Thursday (bring pencil, rubber, calculator)
Test 2 Review
Lesson 8: Integral Properties and Average Value

Additive Property
\[\int_a^c f(x) \, dx = \int_a^b f(x) \, dx + \int_b^c f(x) \, dx \]

Sums and Differences
\[\int_a^b [f(x) \pm g(x)] \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx \]

Constant Multiples
\[\int_a^b c \, f(x) \, dx = c \int_a^b f(x) \, dx \]

A-
\[\int_a^a f(x) \, dx = 0 \]

B-
\[\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx \]

Average Value of a Function
The average value of a function \(f(x) \) on an interval \([a, b]\) is
\[\frac{1}{b-a} \int_a^b f(x) \, dx \]
Lesson 9: Population Growth

To model constant absolute growth, use $P(t) = A + B\ t$

Where: A is the initial population and B is the absolute growth rate

Given the absolute growth rate $P'(t)$, it is trivial to find the change in population from $t = a$ to $t = b$:

$$P(b) - P(a) = \int_a^b P'(t)\ dt$$

Start with population A, and have relative growth rate r.

How can we model this? $P(t) = A(1 + r)^t$

Found the relative change in the population based on its relative growth rate, by integrating the relative growth rate to find $\ln(P(b)/P(a))$, and then solving for $P(b)/P(a)$.
Population Growth

Find a formula for $P(t)$ if $P(0) = 1,200$ and

- P decreases by 12 per year $P(t) = 1200 - 12t$
- P decreases by 1% per year $P(t) = 1200(1 - 0.01)^t$

A population is of size $P(t)$ after t years. The relative rate of growth of $P(t)$ is $\frac{P'(t)}{P(t)}$. If we determine $\int_2^5 \frac{P'(t)}{P(t)} dt = -0.3$ how has the population changed from 2 to 5 years?

$$\int_2^5 \frac{P'(t)}{P(t)} dt = -0.3 = \ln \left| \frac{P(5)}{P(2)} \right| \Rightarrow \frac{P(5)}{P(2)} = e^{-0.3} = 0.741$$

$0.741 < 1.0 \therefore$ population changed by $(0.741 - 1) = -0.259$

population decreased by $\approx 26\%$
Lesson 10: Newton’s Law of Cooling

The rate at which an object cools down or heats up…

That is,

\[y' = k(y - A) \]

Where \(y(t) = \text{temperature at time } t, \) and

A is the ambient (surrounding) temperature.

The Temperature of the object after time \(t \) has passed is

\[y = A + Ce^{kt} \]

\(y' = k(y - A) \): growth proportional to a difference.

Equilibrium solution: \(y = A \) General solution: \(y = A + Ce^{kt} \)
Newton’s Law of Cooling

1- Find the solution for: \(\frac{dP}{dt} = 5P - 50 \) and \(P(0) = 8 \)

\[
P' = 5(P - 10)P(t) = 10 + Ce^{5t} \iff P(t) = 10 - 2e^{5t}
\]

2- If an object takes 40 minutes to cool from 30 degrees to 24 degrees in a 20 degree room, how long will it take the object to cool to 21 degrees?

Solve for t when \(y(t) = 21 \)

\[
y(0) = 20 + Ce^{k*0} = 20 + C = 30 \iff \boxed{C = 10}
\]

\[
y(40) = 24 = 20 + 10e^{40k} \iff k = \frac{\ln(2/5)}{40} = \boxed{-0.023}
\]

\[
y(t) = 21 = 20 + 10\exp(-0.023 * t) \iff t = \frac{-40\ln(10)}{\ln(2/5)} = \boxed{100.5}
\]
Lesson 11: Antiderivatives

Def: We say F is an *antiderivative* for f if $F'(x) = f(x)$.

<table>
<thead>
<tr>
<th>If $f(x)$ is...</th>
<th>...then an antiderivative is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^n</td>
<td>$\frac{1}{n+1} x^{n+1}$ except if $n = -1$</td>
</tr>
<tr>
<td>k</td>
<td>kx (assuming the variable is x!)</td>
</tr>
<tr>
<td>$\cos(kx)$</td>
<td>$\sin(kx)/k$</td>
</tr>
<tr>
<td>$\sin(kx)$</td>
<td>$-\cos(kx)/k$</td>
</tr>
<tr>
<td>e^{kx}</td>
<td>e^{kx}/k</td>
</tr>
<tr>
<td>$\frac{1}{x}$</td>
<td>$\ln</td>
</tr>
<tr>
<td>a^x</td>
<td>$a^x/\ln(a)$</td>
</tr>
</tbody>
</table>

\[\int f(x) \, dx \] represent *all possible* antiderivatives of $f(x)$. Called the *indefinite integral* of $f(x)$.

Lesson 12: Integrals by Substitution

\[\int f(g(x)) g'(x) \, dx \quad \text{Let } u = g(x). \]

\[\int f(g(x)) g'(x) \, dx = \int f(u) g'(x) \, dx = \int f(u) \, du \]

1) Choose \(u \).

2) Calculate \(du \). \quad du = \frac{du}{dx} \, dx

3) Substitute \(u \).

 Arrange to have \(du \) in your integral also.

 (All \(x \)s and \(dx \)s must be replaced!)

4) Solve the new integral.

5) Substitute back in to get \(x \) again.
Lesson 13: Solving Definite Integrals

Theorem: (Fundamental Theorem I)

Or: If F is an antiderivative for f, then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

We have to

- find an antiderivative;
- evaluate at b;
- evaluate at a;
- subtract the results.

- We can use substitution
- Solve an indefinite integral first
- Change the limits

We have three methods:

1. Basic formulas
2. Algebraic simplification
3. Substitution
An Integral Problem

\[\int_0^{\sqrt{\frac{\pi}{2}}} 5x \cos(5x^2) \, dx \]

Let \(u = 5x^2 \).
\(du = 10x \, dx \)

If \(x = 0 \), \(u = 5(0)^2 = 0 \)

If \(x = \sqrt{\frac{\pi}{2}} \), \(u = \frac{5\pi}{2} \)

\[\int_0^{\sqrt{\frac{\pi}{2}}} 5x \cos(5x^2) \, dx = \frac{1}{2} \int_0^{\sqrt{\frac{\pi}{2}}} \cos(5x^2) \cdot 10x \, dx \]

\[= \frac{1}{2} \int_0^{\frac{5\pi}{2}} \cos(u) \, du \]

\[= \frac{1}{2} \sin(u) \bigg|_0^{\frac{5\pi}{2}} \]

\[= \frac{1}{2} \sin\left(\frac{5\pi}{2}\right) - \frac{1}{2} \sin(0) \]

\[= \frac{1}{2} \]
Lesson 14: The Improper Integral

Integrals with one or both limits infinite are referred to as *improper* integrals.

\[\int_{a}^{\infty} f(x) \, dx \quad \int_{-\infty}^{a} f(x) \, dx \quad \int_{-\infty}^{\infty} f(x) \, dx \]

are all considered improper.

With the preceding ideas, we give meaning to integrals with infinite limits:

\[\lim_{b \to \infty} \int_{a}^{b} f(x) \, dx \]

will mean

\[\lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx \]
Lesson 14: The Improper Integral

\[\int_1^\infty e^{-2x} \, dx = \lim_{b \to \infty} \int_1^b e^{-2x} \, dx = \lim_{b \to \infty} \left. \frac{e^{-2x}}{-2} \right|_1^b = -\frac{1}{2} \left(\frac{1}{e^{2b}} - \frac{1}{e^{2(1)}} \right) \]

\[= -\frac{1}{2} \left(\left(\lim_{b \to \infty} \frac{1}{e^{2b}} \right) - \frac{1}{e^{2(1)}} \right) = -\frac{1}{2} \left(0 - \frac{1}{e^2} \right) = \frac{1}{2e^2} \]

\[\int_1^\infty \frac{1}{t} \, dt = \lim_{b \to \infty} \int_1^b \frac{1}{t} \, dt = \lim_{b \to \infty} (\ln |t| \big|_1^b) \]

\[= \lim_{b \to \infty} (\ln b - \ln 1) = \lim_{b \to \infty} \ln b = \infty (diverges!) \]
Lesson 15: Analyzing Antiderivatives

Finding F from F'

$$F(b) = F(a) + \int_a^b F'(x) \, dx$$

Given the graph of F' and $F(0)$, find the following:

$F(0)$, $F(1)$, $F(2)$, $F(3)$, $F(4)$, $F(5)$

g increases where the derivative is + and decreases where it is -

Local max, Local min:

Largest value and Smallest value
Antiderivatives

Locate the x and y coordinates of any local mins/maxes for f, given $f'(x)$ graphed at right, and the fact that $f(0) = -10$.

Local max: $x = 2$

$y = f(0) + \int_{0}^{2} f'(x) \, dx = -10 + 12 = 2$

Local min: $x = 5$

$y = f(2) + \int_{2}^{5} f'(x) \, dx = 2 - 16 = -14$