#1: State the fundamental theorem of calculus version I or II.

Version I:

\[\int_{a}^{b} F'(t) \, dt = F(b) - F(a) \]

Version II:

\[F(x) = \int_{a}^{x} f(t) \, dt \quad \text{and} \quad F'(x) = f(x) \]
Comments of last quiz

#1: State the fundamental theorem of calculus version I or II.

Version I.:
If \(F'(t) \) is continuous for \(a \leq t \leq b \) then

\[\int_{a}^{b} F'(t) \, dt = F(b) - F(a) \]

Version II.
If \(f \) is continuous on an interval, \(a \) is a fixed point in that interval, and \(F(x) \) is defined as

\[F(x) = \int_{a}^{x} f(t) \, dt \]

, then \(F'(x) = f(x) \).
Comments of last quiz

The pace of this course is

Too fast: 2.5
Too slow: 2
Ok so far: 23.5
Exponential Growth and Decay
Review

Differential Equations: An equation with derivatives in it. They express the relationship involving the rates of change

- **Easy to confirm solutions**

1. Which of the following is a solution to the differential equation $y' + y = 0$?

 - $y = e^{2x}$
 - $y = x^2$
 - $y = e^{-x}$
 - $y = 2e^x$

 - **Is $y = e^{2x}$ a solution to $y' + y = 0$?** $y' + y = 2e^{2x} + e^{2x} = 3e^{2x} \neq 0$
 So **NO**, this is not a solution to the differential equation.

 - **Is $y = x^2$ a solution to $y' + y = 0$?** **NO, since** $y' + y = 2x + x^2 \neq 0$

 - **Is $y = e^{-x}$ a solution to $y' + y = 0$?** $y' + y = -e^{-x} + e^{-x} = 0$
 So **Yes**, this is a solution to the differential equation.

 - **Is $y = 2e^x$ a solution to $y' + y = 0$?** **NO, since** $y' + y = 2e^x + 2e^x = 4e^x \neq 0$
Review

• Harder to *find* solutions

We approximate solutions at a series of points, using Euler’s method.

\[y(x + h) \approx y(x) + h \, y'(x) \]

For this class, we will usually use \(h = 1 \): \[y(x + 1) \approx y(x) + y'(x) \]

2. Consider the initial value problem \(y' = 2y - t, \quad y(1) = 3 \).

Estimate \(y(2) \) and \(y(3) \).

\[y(2) \approx y(1) + y'(1) = 3 + 2(3) - 1 = 8 \]

\[y(3) \approx y(2) + y'(2) = 8 + 2(8) - 2 = 22 \]
Proportional Growth: $y' = ky$

- Rate of growth proportional to the function
- Large values of y mean fast growth
- Small values of y mean slow growth
Proportional Growth: \(y' = ky \)

Applications

1. **Balance of a bank account**: The interest paid is proportional to the amount present.

2. **Decay of a radioactive substance**: In this case, one-half of any amount present will decay in some fixed amount of time called a half-life.

3. **Amount of a drug absorbed**: The body will absorb a proportion of the drug present.

4. **The size of a population**: The larger a population, the more rapidly the population will grow. Again, the growth rate will be proportional to the size of the current population.
Solving the Equation

Special case: \(y' = y \).

One solution: \(y = e^x \).\[\frac{d}{dx} e^x = e^x \]

Also have: \(y = Ce^x \).\[\frac{d}{dx} Ce^x = Ce^x \]

In fact, all solutions are of the form \(\frac{d}{dx} Ce^x = Ce^x \) where \(C = y(0) \).

Now: \(y' = ky \)

Based on what we saw last class, try \(y = Ce^{kx} \):

\[\frac{d}{dx} Ce^{kx} = k(Ce^{kx}) \] This works!
Solving the Equation

We say that $y = Ce^{kx}$ is the general solution to $y' = k \cdot y$.

(Note: we have not proved this!)

We call it a general solution because we do not know the value of C. If we also determine the constant C, we call the resulting solution the particular solution. For this, we need additional information: must have an initial value problem.
Example

Solve the initial value problem \(y' = 2y \) and \(y(0) = 3 \).

General solution: \(y = Ce^{2x} \)

If \(y(0) \) is to be 3, then \(y(0) = Ce^0 = 3 \), so \(C = 3 \).

The solution to this initial value problem is \(y = 3e^{2x} \).

Note About \(C \)

- If we are given \(y(0) \) as our initial value, then the \(C \) in \(y = Ce^{2x} \) is \(y(0) \).

- If we are given a different initial value, we will have to set up and solve an equation to find \(C \).
Example

Solve the initial value problem \(y' = -y \), \(y(2) = 1 \).

General Solution: \(y = Ce^{-x} \) \((k = -1) \)

Since \(y(2) \) is to be 1, we must solve

\[
1 = Ce^{-2}
\]

to get

\[
C = e^2.
\]

Solution: \(y = e^2e^{-x} = e^{2-x} \)
Exponential Growth

\[y' = k \cdot y, \quad k > 0: \text{Exponential growth} \]

Ex: \[y' = 2y; \] Two solutions:

\[y = 5e^{2x} \quad y = -e^{2x} \]

Exponential Decay

\[y' = k \cdot y, \quad k < 0: \text{Exponential decay} \]

Ex: \[y' = -y; \] Two solutions:

\[y = 2e^{-x} \quad y = -3e^{-x} \]
Growth: Example

Accruing Interest

2003: Deposit $1,500 into a bank account. Interest is 7% compounded continuously. How much in 2013?

Let \(M(t) \) = amount after \(t \) years

\[
\frac{dM}{dt} = 0.07M
\]

(General Solution) \(M = Ce^{0.07t} \)

\(C = 1,500 \)

\(M = 1500e^{0.07t} \)

2013 corresponds to \(t = 10 \), so

\[
M(10) = 1500e^{0.07(10)} \approx 3,020.63
\]

Example

In 2003: Instead, deposit $2,000 at 9%. How much in 2008?

\[
M' = 0.09M
\]

\[
M(t) = 2000e^{0.09t}
\]

\[
M(5) = 2000e^{0.09(5)} \approx 3,136.62
\]
Growth: Example

Algae Population Growth

Given unlimited resources and space, populations grow at a rate proportional to the current size.

Algae population: Doubles every 7 hours. Start with 100 algae. How long will it take to grow 1,000,000?

Exponential growth: \(P(t) = P_0 e^{kt} \)

Initially, \(P(0) = 100 \), so we have

Find \(k \):

\[
P(7) = 100e^{7k} = 200
\]

\[e^{7k} = 2\]

\[7k = \ln(2)\]

\[k = \frac{\ln(2)}{7}\]

Population at \(t \):

\[P(t) = 100e^{\frac{\ln(2)}{7}t}\]
Growth: Example

Algae Population Growth

Algae population: Doubles every 7 hours. Start with 100 algae. How long will it take to grow 1,000,000?

Population at time t: $P(t) = 100e^{\frac{\ln(2)}{7}t}$

$100e^{\frac{\ln(2)}{7}t} = 1,000,000$

$e^{\frac{\ln(2)}{7}t} = 10,000$

$t = \frac{7\ln(10,000)}{\ln(2)} \approx 93$ hours
Growth: Example

Algae Population Growth

Algae population: What if it doubles every 10 hours, and we start with 20. How long will it take to grow 1,000,000?

Population: \(P(t) = 20e^{kt} \)

\(k: \)

\[40 = 20e^{k \cdot 10}, \text{ so } k = \frac{\ln(2)}{10} \]

\[P(t) = 20e^{\frac{\ln(2)}{10}t} = 1,000,000 \]

\[e^{\frac{\ln(2)}{10}t} = 50,000 \]

\[t = \frac{10\ln(50,000)}{\ln(2)} \approx 156 \text{ hours} \]
Decay: Example

Carbon Dating

C-14: **Half-life approximately 5,730 years.**

Fossil with only 1% C-14 left. How old is the fossil?

All half-life problems: If y is percentage left, then

\[
\frac{dy}{dx} = ky
\]

Since \(y(0) = 1 \) (i.e., 100%), we have \(y(t) = e^{kt} \)

Find \(k \):

\[
y(5,730) = e^{5730k} = 0.5
\]

\[
5730k = \ln(0.5)
\]

\[
k = \ln(0.5) / 5730
\]

\[
\approx -0.000120968
\]

Age:

\[
0.01 = e^{-0.000120978 t}
\]

\[
t = \frac{\ln(0.01)}{-0.000120978} \approx 38,069 \text{ years}
\]
Decay: Example

Carbon Dating

C-14: Half-life approximately 5,730 years.

What if 20% of the C-14 remained?

Same k!

\[0.2 = e^{-0.000120968t} \]

\[t = \frac{\ln(0.2)}{-0.000120968} \approx 13,305 \text{ years} \]
Decay: Example

Chemical Dilution

Tank: 90 gallons water and 10 gallons chemical. Water flows in, mixture flows out at 20 gal/min.

How many minutes to reduce concentration to 1%?

Let \(y(t) \): concentration at \(t \). Then

\[
y(0) = \frac{\text{vol of chem}}{\text{vol of tank}} = \frac{10}{100} = 0.1
\]

What’s \(y' \)? Rate of chemical flowing out is

(outflow rate)(concentration) = 20 \(y(t) \)

Rate of change of concentration?

\[
y' = -\frac{20y}{100} = -0.2y
\]

Solve: \(y(0) = 0.1 \), \(y' = -0.2y \). \(y(t) = 0.1e^{-0.2t} \)
Decay: Example

Chemical Dilution

Tank: 90 gallons water and 10 gallons chemical.

Water flows in, mixture flows out at 20 gal/min.

How many minutes to reduce concentration to 1%?

\[0.1e^{-0.2t} = 0.01 \]

\[e^{-0.2t} = 0.1 \]

\[t = \frac{\ln(0.1)}{-0.2} \approx 11.5 \text{ minutes} \]
Group work

Solve the initial value problem:

\[y' + 2y = 0 \quad \text{and} \quad y(1) = 3 \]