I. (32 pts.) Find the truth values of the following statements. Explain your reasoning.

1. $3 \geq 7$ only if $2 \leq 7$. $F \rightarrow T \equiv T$

2. $3 \geq 7$ if $2 \leq 7$. $T \rightarrow F \equiv F$

3. A square is a rectangle if and only if it has four 90° angles or it has two 45° angles and two 135° angles. Omitted due to predicates instead of statements.

4. \forall odd integers n, $\exists k \in Z$, $n = 2k + 1$. True. There is some integer k for every odd integer which makes the statement true.

5. \exists odd integers n, $\forall k \in Z$, $n = 2k + 1$. False. There is not one integer which has the form $2k + 1$ for all k.

6. $\exists k \in Z$, \forall odd integers n, $n = 2k + 1$. False. There is not one k which generates all n.

7. $\exists k \in Z$, \exists odd integers n, $n = 2k + 1$. True. $n = 3$, $k = 1$.

8. Write the negation of #7. $\forall k \in Z$, \forall odd integer n, $n \neq 2k + 1$

II. (10 pts.) In Stewart’s Calculus (5e) a theorem states:
“If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.”

1. Write the contrapositive.

If the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is not continuous at a, then g is not continuous at a or f is not continuous at $g(a)$.

2. Write the negation.

g is continuous at a and f is continuous at $g(a)$ and the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is not continuous at a.
III. (10 pts.) Given the following information about a computer program, find the mistake using valid argument forms. (You may write the statements first using symbols.)

1. There is an undeclared variable or there is a syntax error in the first five lines.
2. If there is a syntax error in the first five lines, then there is a missing semicolon or a variable name is misspelled.
3. There is not a missing semicolon.
4. There is not a misspelled variable name.

\[\begin{align*}
&u \lor s \\
&s \rightarrow se \lor m \\
&\sim se \\
&\sim m \\
&\sim se \\
&\sim m \\
&\therefore \sim se \land \sim m \equiv \neg(se \lor m)
\end{align*} \]

\[\begin{align*}
&s \rightarrow se \lor m \\
&\sim(se \lor m) \\
&\therefore \sim s
\end{align*} \]

\[\begin{align*}
&u \lor s \\
&\sim s \\
&\therefore u
\end{align*} \]

IV. (16 pts.) 1. Write a truth table for \(q \rightarrow (p \rightarrow q) \).

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p \to q</th>
<th>q \to (p \to q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

2. Use Theorem 1.1.1 to simplify \(q \rightarrow (p \rightarrow q) \).

\[q \rightarrow (p \rightarrow q) \equiv q \lor (\sim p \lor q) \equiv (\sim q \lor q) \lor \sim p \lor \sim p \equiv \sim q \lor \sim p \lor q \rightarrow (p \rightarrow q) \]
Prove using the definitions given in class or show a counterexample.

1. \(\forall a, n \in \mathbb{Z}, \text{ if } a \mid n^2 \text{ and } a \leq n, \text{ then } a \mid n. \)

 False. Let \(a = 4 \) and \(n = 6. \) 4 divides 36 but 4 does not divide 6.

2. \(\forall n \in \mathbb{Z}, \ n^2 + n \) is even.

 Proof: Let \(n \) be an integer.

 Case 1: Suppose \(n \) is even. Then \(n = 2k \) where \(k \) is an integer.

 \[
 n^2 + n = (2k)^2 + 2k = 4k^2 + 2k = 2(2k^2 + k)
 \]

 where \(2k^2 + k \) is an integer. Therefore \(n^2 + n \) is even.

 Case 2: Suppose \(n \) is odd. Then \(n = 2k + 1 \) where \(k \) is an integer.

 \[
 n^2 + n = (2k + 1)^2 + 2k + 1 = 4k^2 + 6k + 1 = 2(2k^2 + 3k + 1)
 \]

 where \(2k^2 + 3k + 1 \) is an integer. Therefore \(n^2 + n \) is even.

3. \(\forall n \in \mathbb{Z}, \text{ if } n > 2 \text{ and } n \text{ is prime, then } n \text{ is odd.} \)

 Proof: Let \(n \) be a prime integer greater than 2. Suppose \(n \) is even. Then \(n = 2k \), where \(k \) is an integer.

 Since \(n \) is greater than 2, \(k \) is greater than 1, so \(n \) is a factor of two integers neither of which is 1. Therefore \(n \) is composite. This is a contradiction since \(n \) is prime. Therefore \(n \) is odd.