I. Consider the following statement:
 If x and y are odd integers, then x + y is an even integer.

1. Prove the statement directly.
2. Prove the statement by contrapositive.
3. Prove the statement by contradiction.

II. Use the Quotient-Remainder Theorem to prove that for any integer n, \(3 \mid n(n+2)(n-2) \).

III. Prove or give a counterexample.
1. \(\forall a, b \in \mathbb{Z}^+, \text{ if } a \mid b \text{ and } a \mid (b + 2), \text{ then } a = 1 \text{ or } a = 2. \)
2. \(\forall a, b \in \mathbb{Z}, \text{ if } a < b, \text{ then } a^2 < b^2. \)
3. \(\forall a, b \in \mathbb{Z}, \text{ if } a < b, \text{ then } a^2 < b^2. \)
Answers:

I. 1. Proof: Let x and y be odd integers. Then \(x = 2m + 1 \) and \(y = 2n + 1 \), where \(m \) and \(n \) are integers. \(x + y = 2m + 1 + 2n + 1 = 2m + 2n + 2 = 2(m + n + 1) \) where \(m + n + 1 \) is an integer. Therefore \(x + y \) is an even integer.

2. If \(x + y \) is an odd integer, then \(x \) or \(y \) is an even integer.
Proof: Let \(x + y \) be an odd integer. \(x + y = 2k + 1 \) where \(k \) is an integer. \(x = 2k + 1 - y \). If \(y \) is even, the conclusion is proved. Suppose \(y \) is odd. Then \(y = 2r + 1 \) where \(k \) is an integer. \(x = 2k + 1 - (2r + 1) = 2k + 1 - 2r - 1 = 2k - 2r = 2(k - r) \) where \(k - r \) is an integer. Then \(x \) is even. Therefore either \(x \) or \(y \) is even.

3. Proof: Let \(x \) and \(y \) be odd integers. Suppose \(x + y \) is odd. Then \(x + y = 2k + 1 \) where \(k \) is an integer. Because \(x \) and \(y \) are odd integers, \(x = 2m + 1 \) and \(y = 2n + 1 \), where \(m \) and \(n \) are integers. \(x + y = 2m + 1 + 2n + 1 = 2m + 2n + 2 = 2(m + n + 1) \) where \(m + n + 1 \) is an integer. Therefore \(x + y \) is an even integer. Contradiction to \(x + y \) being odd. Therefore \(x + y \) is even.

II. Proof: Let \(n \) be an integer. Then \(n = 3q, 3q + 1 \) or \(3q + 2 \) where \(q \) is an integer by the Quotient-Remainder Theorem.

Case 1. \(n = 3q \): \(n(n + 2)(n - 2) = (3q)(3q + 2)(3q - 2) = 3[q(q + 2)(3q - 2)], \) So \(3n \).

Case 2. \(n = 3q + 1 \): \(n(n + 2)(n - 2) = (3q+1)(3q + 3)(3q - 1) = 3[(q+1)(3q + 1)(3q - 1)], \) So \(3n \).

Case 3: \(n = 3q + 2 \): \(n(n + 2)(n - 2) = (3q+2)(3q + 4)(3q) = 3[(q)(3q + 2)(3q +4)], \) So \(3n \).

III. 1. True
Proof: Let \(a, b \) be positive integers, \(ab \) and \(a(b+2) \). \(b = at \) and \(b + 2 = as \) where \(t \) and \(s \) are integers. \(b = at = as - 2 \), so \(2 = as - at = a(s - t) \) where \(s - t \) is an integer. Therefore \(a \) or \(a = 2 \).

2. True
Let \(a = 1 \) and \(b = 2 \). \(1 < 2 \) and \((1)^2 < (2)^2 \)

3. False
Let \(a = -4 \) and \(b = -3 \). \(-4 < -3 \), but \((-4)^2 \) is not \((-3)^2 \)