Chapter 10

I. 1. Let \(A = \{2, 4, 6\} \). Define a binary relation from \(A \) to \(A \) as follows:
\[R = \{(2, 6), (4, 2), (6, 4)\} \]

a. Is \(4 \, R \, 6 \)?
b. Is \(R \) a function?
c. Does \(R \) have an inverse? If so what is it.
d. Draw the directed graph of \(R \).
e. Is \(R \) reflexive? Explain.
f. Is \(R \) symmetric? Explain.
g. Is \(R \) transitive? Explain.
h. Is \(R \) antisymmetric? Explain.
i. Is \(R \) an equivalence relation? Why or why not?
j. Is \(R \) a partial order relation? Why or why not?

2. The congruence modulo 2 relation \(E \) is defined from \(\mathbb{Z} \) to \(\mathbb{Z} \) as follows:
\[\forall (x, y) \in E \iff 2 \mid (x - y) \]

a. Is \(18 \, E \, 94 \)?
b. Is \(E \) a function?
c. Is \(E \) reflexive? Explain.
d. Is \(E \) symmetric? Explain.
e. Is \(E \) transitive? Explain.
f. Is \(E \) antisymmetric? Explain.
g. Is \(E \) an equivalence relation? Why or why not?
h. Is \(E \) a partial order relation? Why or why not?

3. \(D \) is the binary relation defined from \(\mathbb{R} \) to \(\mathbb{R} \) as follows:
\[\forall (x, y) \in D, \ xDy \iff xy > 0 \]

a. Is \(-3 \, D \, 4 \)?
b. Is \(D \) a function?
c. Is \(D \) reflexive? Explain.
d. Is \(D \) symmetric? Explain.
e. Is \(D \) transitive? Explain.
f. Is \(D \) antisymmetric? Explain.
g. Is \(D \) an equivalence relation? Why or why not?
h. Is \(D \) a partial order relation? Why or why not?

4. \(R \) is the binary relation defined on \(A = \{1, 2, 3, 4, 6, 12\} \) as follows:
\[\forall x, y \in A, \ xRy \iff x \text{ exactly divides } y \]

a. Is \(R \) a function?
b. Is \(R \) reflexive? Explain.
c. Is \(R \) symmetric? Explain.
d. Is \(R \) transitive? Explain.
e. Is \(R \) antisymmetric? Explain.
f. Is \(R \) an equivalence relation? Why or why not?
g. Is \(R \) a partial order relation? Why or why not?
II. 1. Let R be a relation defined on the set of integers \mathbb{Z} such that
 For all integers x and y, xRy iff $4 \mid (x^2 - y^2)$.
 a. Verify that R is an equivalence relation.
 b. Find the equivalence classes of R.

2. Let R be a relation defined on the set of real numbers A such that
 $\forall x, y \in A, \ xRy \iff x^2 - y^2 = 0$.
 a. Verify that R is an equivalence relation.
 b. List all the members of $[3]$.
 c. Which of the following equivalence classes are equal?
 $[-41], \left[\frac{-2}{3}\right], \left[\frac{3}{4}\right], \left[\frac{6}{9}\right], [4], \left[\frac{16}{24}\right], [41]$.

III. 1. In baseball’s World Series, the first team to win four games wins the series. Suppose team A wins the first two games. How many ways can the series be completed?

2. a. How many ways can the letters of the word DESIGN be arranged in a row?
 b. How many ways can the letters of the word DESIGN be arranged in a row if the letters SIG remain together in a row?
 c. How many ways can the letters of the word DESIGN be arranged in a row if G and N must remain next to each other as either NG or GN?

IV. True or False

1. If f is $1 - 1$, then $f \circ g$ is $1 - 1$.
2. If $f \circ g$ is $1 - 1$, then f is $1 - 1$.
3. If $f \circ g$ is $1 - 1$, then g is $1 - 1$.
4. If a relation is $1 - 1$ and onto, then it is a function.
5. A relation that is not $1 - 1$ can still have an inverse.
6. If relations R and S are reflexive, then $R \cap S$ is reflexive.
7. The set $\{x \in \mathbb{Q} \mid 1 < x < 2\}$ is countable.
Answers:

I 1. a. no b. yes c. \(R^{-1} = \{(6, 2), (2, 4), (4, 6)\} \)
d

II. 1. a. reflexive: \(x^2 - x^2 = 0 \) \(\text{if} \) and \(xRx. \)
symmetric: Let \(4 | x^2 - y^2 \). Then \(x^2 - y^2 = 4s \) for some integer \(s \). \(y^2 - x^2 = -(x^2 - y^2) = -4s = 4(-s) \) where \(-s\) is an integer, so \(4 | y^2 - x^2 \) and \(yRx. \)
transitive: Let \(4 | x^2 - y^2 \) and \(4 | y^2 - z^2 \). Then \(x^2 - y^2 = 4s \) for some integer \(s \) and \(y^2 - z^2 = 4r \) for some integer \(r \). \(x^2 - z^2 = x^2 - y^2 + y^2 - z^2 = 4s + 4r = 4(r + s) \), \(r + s \) is an integer. Therefore \(4 | (x^2 - z^2) \) and \(xRz. \)

b. \([0] = \{x| x \text{ is even}\} \quad [1] = \{x| x \text{ is odd}\} \)

2. a.
b. \([3] = \{-3, 3\}\)
c. \([-41] = [41], \quad [2/3] = [6/9] = [16/24]\)

III. 1. 15 ways (by tree diagram)

2. a. 720 ways b. 24 ways c. 240 ways