Functions

A function from a set X to a set Y, $f: X \rightarrow Y$, is a relationship between the elements of the two sets such that each element in X is related to a unique element in Y.
X is the domain of f
Y is the co-domain of f

We say that for every \(x \in X, \ x \xrightarrow{\ f\ } y, \ y \in Y \)
\(y = f(x) \)

The range of \(f = \{ y \in Y \mid y = f(x) \text{ for some } x \in X \} \)

The inverse image of \(y = \{ x \in X \mid f(x) = y \} \).

For both examples of functions shown, Domain =

Co-Domain =

Range\(_1 \) = Inverse image of \(y_2 = \)

Range\(_2 \) = Inverse image of \(y_1 = \)

Inverse image of \(y_2 = \) Inverse image of \(y_3 = \)

ex. \(y = x^2, \ f : R \rightarrow R \)
Definition: Suppose f and g are two functions from X to Y.

$$f = g \quad f(x) = g(x) \quad \forall x \in X$$

ex.

$$f(x) = 2x \quad g(x) = \frac{2x^3 + 2x}{x^2 + 1}$$

Functions

$$f : R \rightarrow R$$

ex.
The Hamming Distance Function gives a measure of the difference between two strings of zeros and ones that have the same length. Let $\mathbb{B} = \{0, 1\}$. \mathbb{B}^n is the set of all strings of zeros and ones of length n. Define

$$H : \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{Z}^{\text{nonneg}}, \quad H(s, t) = \text{the number of positions in which } s \text{ and } t \text{ have different values.}$$

$n = 8$

$H(10111001, 00011101) =$
Do:

1. $f : X \rightarrow Y$ is defined by $\{(a, 1), (b, \sqrt{2}), (c, \sqrt{3}), (d, 2)\}$
 Find the domain, range, and inverse image of $\sqrt{2}$.

2. Let P be the set of all U.S. presidents. For $p \in P$, $f(p)$ = the successor of p. Is f a function?

3. Let $X =$ the set of SSNs of students in this class. Define f such that $f(SSN) = SSN \mod 5$.
 Find $f(234567890)$ and $f(123456789)$.