Review: Use an element argument to prove:

- sets A, B, if $A \cap B$, $P(A) \cap P(B)$

ex. Let $S = \{a, b, c\}$ and let S_a be the set of all subsets of S that contain a, let S_b be the set of all subsets of S that contain b, let S_c be the set of all subsets of S that contain c, and let S_{\cup} be the set whose only element is \cup. Is $\{S_a, S_b, S_c, S_{\cup}\}$ a partition of $P(S)$?
ex. sets A, B, $A \setminus (A \cap B) = A \setminus B$

ex. sets A, B, C, $(A \setminus B) \setminus C = (A \setminus C) \setminus B$
ex.

Sets A,B,C, $(A \uplus B) \cup (B \uplus A) = (A \cup B) \uplus (A \cap B)$
Derive the following:

For all sets A and B, \(A \triangle (A \triangle B) = A \cap B \)

Do: Simplify: \(A \cap ((B \cup A^c) \cap B^c) \)