Prove the following:

1) Let x and y be Real Numbers.
 a) Use a direct proof to prove that if $x = y$, then $x^2 = y^2$.
 b) Redo the proof using proof by contradiction.
 c) Redo the proof using proof by contraposition.

2) Use the fifth postulate of Euclid and proof by contradiction to prove the following:
 Let u, v, and w be distinct lines in a plane. If u is parallel to v and v is parallel to w, then u is parallel to w.

 Fifth Postulate: Given a line m and a point p not on m (in a plane), there is exactly one line through p and parallel to m.

3) Prove by contradiction: if x is a real number and $x^3 + 4x = 0$, then $x = 0$.

4) Prove by contraposition that if n^2 is odd then n is odd.

5) Use the method of contradiction to prove that $\sqrt{3}$ is irrational.

6) Prove that the product of three consecutive integers is divisible by three using the Quotient Remainder Theorem.

7) Prove by contraposition that for all integers a, b, and c, if a does not divide bc, then a does not divide b.

8) Prove by contraposition that for all integers m and n, if $m + n$ is even then m and n are both odd or both even.