Solutions to Test 1:

1) (8pts) Let \(H : \) doing homework, \(C : \) passing this course

- a) \(H \rightarrow C \) where \(H \) is the sufficient condition and \(C \) is the necessary condition
- b) \(C \rightarrow H \) where \(C \) is the sufficient condition and \(H \) is the necessary condition
- c) \(C \rightarrow H \) (same as b)
- d) \(\sim H \rightarrow \sim C \equiv (C \rightarrow H) \) by the contrapositive

Therefore b), c) and d) are equivalent.

2) (16 pts)

a) If \(n \) is odd then there is an integer \(k \) that will give \(n = 2k + 1 \). (True)

b) There is an odd integer \(n = 2k + 1 \) where \(k \) can be any integer value. (False)

c) There is at least one integer \(k \) that can be used to represent any odd integer \(n = 2k + 1 \). (False)

d) \(\sim \exists k \in \mathbb{Z}, \forall n \in \mathbb{Z}, n = 2k + 1 \equiv \forall k \in \mathbb{Z}, \exists n \in \mathbb{Z}, n \neq 2k + 1 \)

Given any integer \(k \), there is an integer \(n \) and \(n \neq 2k + 1 \). (True)

3) (12pts) We are given that \(\sim k \) is true, therefore since \((m \rightarrow k) \equiv (\sim k \rightarrow \sim m) \) is a true statement, we have that \(\sim m \) is true and \(m \) is false. The statement \(p \lor m \) indicates that \(p \) is true. Next we need to consider the statement \(\sim m \rightarrow (y \land q) \) which forces \((y \land q) \) to be true since \(\sim m \) is true. Therefore both \(y \) and \(q \) are true. We now have that \(p \) and \(q \) are both true and \((p \land q) \rightarrow w \), this will give us that valid conclusion \(w \).

4) (6pts) Given that \(b \rightarrow (m \lor w) \) is false, this means that \(b \) is true and \((m \lor w) \) is false. We know that both \(m \) and \(w \) have to be false.

a) The statement \(m \) is false
b) \(w \rightarrow b \) is true since \(w \) is false and \(b \) is true.

5) (6pts) By the Quotient Remainder Theorem, since we have \(x \mod 6 = 4 \) and \(y \mod 6 = 5 \), then \(x = 6q + 4 \) and \(y = 6d + 5 \).

Then \(x \times y = (6q + 4)(6d + 5) = 36qd + 30q + 24d + 20 = 6(6qd + 5q + 4d + 3) + 2 \)

By definition of Quotient Remainder Theorem we have \(xy \mod 6 = 2 \)

6) (6pts) Let \(B \) be the set of birds in the wildlife shelter and \(F \) is the set of foxes in the wildlife shelter and let \(P(x, y) \) be the statement \(x \) and \(y \) in the shelter

\(\exists x \in B, \exists y \in F \mid P(x, y) \)

The truth set for this statement is two eagles, four hawks, one owl and one hokie bird in \(B \) and anyone of three foxes in \(F \).
7) (8pt)
\[\sim [m \to (s \land r)] \land \sim s \equiv \]
\[\sim [\sim m \lor (s \land r)] \land \sim s \equiv \]
\[m \land \sim (s \land r) \land \sim s \equiv \]
\[m \land (\sim s \lor \sim r) \land \sim s \equiv \]
\[m \land \sim s \]

8) (12pts) Theorem: The sum of a rational number and an irrational number is always irrational.

Proof by contradiction:
Assume a rational number and an irrational number is rational: Let \(r \) be a rational number and \(r = a/b \) where \(a, b \neq 0 \) and \(k \) is an irrational number. Assume the sum is rational. Therefore \(r + k = a/b + k = c/d \) where \(c, d \neq 0 \).

Consider \[a/b + k = c/d \]
\[k = c/d - a/b \]
since we know that the difference rational number then \(k \) is a rational number, but this is a contradiction to the given property that \(k \) is irrational. Therefore the original statement is true.

9) (12pt) Theorem: If \(a \) does not divide \(b^2 \), then \(a \) does not divide \(b \).

Proof by contrapositive: If \(a \) divides \(b \) then \(a \) divides \(b^2 \).

Since \(a \) divides \(b \), by definition of divisible we have \(b = aq \)
Therefore \(bb = baq \) and \(b^2 = a(bq) = ad \)
This gives us that \(b^2 \) is divisible by \(a \).
We have proved the contrapositive is true and therefore the original statement is true since it is equivalent to its contrapositive.

10) (12pt) Theorem: If \(n \) is positive prime integer \(> 2 \) then \(n \) is odd.

Use proof by contradiction: Assume that \(n \) is even. Then \(n = 2k \) by definition of even and \(n \) can be divided by the integers 1, \(n \), 2, and \(k \). The contradicts the definition of prime which states that a prime number can only be divided by 1 or itself. Therefore all prime numbers \(> 2 \) must be odd.