Worksheet for Math 2534 Chapter 7 – 10

1) Are the following functions one to one and onto? Is the inverse function well defined? In not then make adjustments necessary for the inverse to be valid.
 a) \(F(x) = 10x + 4 \) defined on \(\mathbb{R} \)
 b) \(F(x) = \frac{6x - 1}{x + 3} \) defined on \(\mathbb{R} - \{-3\} \)
 c) \(F(x) = \ln(x - 4) \) Defined on \(\mathbb{R} - \{4\} \)

2) Prove the following: Given \(A, B \) are sets and \(f \) maps \(A \) to \(B \) and \(g \) maps \(B \) to \(A \),
 A) If the functions \(f \) and \(g \) are both “one to one” then the composition \((g \circ f) \) is also one to one.
 b) If the functions \(f \) and \(g \) are both “onto” then the composition \((g \circ f) \) is also onto.

3) Are the following Equivalence Relations on \(A = \{1,2,3,4,5\} \)?
 \(R_1 = \{(1,1),(2,2),(3,3),(3,4),(4,3),(4,4)(5,5)\} \)
 \(R_2 = \{(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\} \)
 \(R_3 = \{(1,3),(2,4),(1,5),(3,1),(3,5),(4,2),(5,1),(5,3)\} \)
 \(R_4 = \{(1,1),(1,3),(1,5),(2,2),(3,1),(2,4),(3,3),(3,5),(5,3),(5,1),(4,2),(4,4)(5,5)\} \)

 Draw a directed graph for each relation given above.

4) Is the function \(f : \mathbb{Z} \mod 4 \to \mathbb{Z} \mod 4 \) given by \(f[x] = [7x] \) a bijection? Is the inverse function well defined?

5) Verify that the mapping from the positive integers into the positive integers given by \(f(z) = z \mod 4 \) is an equivalence relation. Restated, this is the same as saying \(4|z - y \) where \(y = f(z) \). [Notice that this equivalence relation will partition the set of integers into equivalence classes. Describe the equivalence classes]

6) Prove that the relation \(R \) given by \((a,b) \in R \iff ab = bc \) is an equivalence relation when \(a, b \) are integers. Describe the equivalence classes that are created.

7) If an Equivalence relation is defined by the following pair wise disjoint sets. Then express this relation as order pairs.
 \[R = \{1, 2\} \cup \{3, 5\} \cup \{4\} \]

8) If \(f \) maps finite sets \(A \) to \(B \) and \(n(A) > n(B) \) prove that \(f \) is one to one iff \(f \) is onto.

9) If there are 500 students in one lecture hall. How many are guaranteed to have the same birthday. (Explain using the Pigeonhole Principle.)
10) Let \(A = \{2, 4, 6\} \). Define a binary relation from \(A \) to \(A \) as follows:
\[R = \{(2, 6), (4, 2), (6, 4)\} \]

a. Is 4 R 6?
b. Is R a function?
c. Does R have an inverse? If so what is it?
d. Draw the directed graph of R.
e. Is R reflexive? Explain.
g. Is R transitive? Explain.
h. Is R antisymmetric? Explain.
i. Is R an equivalence relation? Why or why not?
j. Is R a partial order relation? Why or why not?

11). D is the binary relation defined on \(R \) as follows:
\[\forall (x, y) \in D, \ x \text{Dy} \leftrightarrow xy > 0 \]

a. Is -3 R 4?
b. Is D a function?
d. Is D symmetric? Explain.
e. Is D transitive? Explain.
g. Is D antisymmetric? Explain.
h. Is D an equivalence relation? Why or why not?
i. Is D a partial order relation? Why or why not?

12) \(R \) is the binary relation defined on \(A = \{1, 2, 3, 4, 6, 12\} \) as follows:
\[\forall x, y \in A, \ x \text{Ry} \leftrightarrow x \text{ exactly divides } y \]
a. Is R a function?
b. Does R have an inverse? If so what is it?
e. Is R transitive? Explain.
g. Is R antisymmetric? Explain.
h. Is R an equivalence relation? Why or why not?
i. Is R a partial order relation? Why or why not?

13) Given that R is a relation and A, B, C are sets such that \(A \text{RB} \) iff \(A \cap C = B \cap C \), Verify that R is an equivalence relation.