Answers to PMI worksheet #1

Warning: 😊 I am not doing answers or complete write ups for all the problems on this sheet. I will do a couple of complete write ups, but I expect to see complete write ups on anything you hand in to be graded.

The correct write up will involve complete sentences and the following outline:
1) Statement of Hypothesis
2) Verification of base cases (Elements in the truth set)
3) Assume true for n
4) Prove true for n+1 (you must show the reader what the expected end results will be)
5) Body of Proof
6) Statement of conclusion that will usually go something like this: Since I have assumed true for arbitrary n and proved true for n+1, the Hypothesis is true for all natural numbers for n > ??.

3) I will prove using the Principle of Math Induction that $2 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$ for all natural numbers.
I will first verify that the hypothesis is true for at least one value of n.
Consider the value n=1.

$2^1 = 2^{1+1} - 2$
$2 = 4 - 2$
$2 = 2$

Now I will assume true for some arbitrary n and prove true for n+1. I will show that $2 + 2^2 + 2^3 + \ldots + 2^{n+1} = 2^{n+2} - 2$

Proof: Since we assume that the hypothesis is true for n, we have that $2 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$

Now add the n + 1 term to both sides of the equation to get

$2 + 2^2 + 2^3 + \ldots + 2^n + 2^{n+1} = 2^{n+1} - 2 + 2^{n+1}$

$= 2^{n+2} - 2$

Which gives me the results I needed as shown above. Since I have assumed true for some arbitrary natural number n and prove true for n+1, the hypothesis is true for all natural numbers.
5) I will prove using PMI that $1 + 2^n < 3^n$ for all natural numbers $n \geq 2$.
I will show that the hypothesis is true for at least one value of n.
Consider $n = 2$: $1 + 2^2 < 3^2$ to get $5 < 9$.

Now I will assume true for some arbitrary n and prove true for $n+1$. I will show that $1 + 2^{n+1} < 3^{n+1}$

Proof: Consider $1 + 2^{n+1} = 1 + 2*2^n < 1 + 2*3^n = 1 + 3^{n+1}$
Conclusion: Since I have assumed true for some arbitrary n and proved true for $n + 1$, the hypothesis is true for all natural numbers $n \geq 2$.

8) Incomplete write to show body of proof only.
1) Give statement and method of proof ($3^n < n!$ for $n > 4$)
2) Verify for at least one value of $n > 4$
3) State clearly assumptions, givens, and show what you are trying to prove
4) Body of Proof:
Consider $3^{n+1} = 3*3^n < 3*n! < n*n!$ (since $n > 4$) $< (n + 1)*n! = (n + 1)!$

5) Conclusion

9) Incomplete write to show body of proof only.
1) Give statement and method of proof ($2^n \geq n^2 + n$ for $n > 4$)
2) Verify for at least one value of $n > 4$
3) State clearly assumptions, givens, and show what you are trying to prove
4) Body of Proof:
Consider $2^{n+1} = 2*2^n \geq 2*(n^2 + n) \geq 2n(n + 1) = n(n + 1) + n(n + 1) \geq n(n + 1) + 2(n + 1)$ (since $n > 4$) $= (n+1)(n+2) = (n+1)((n+1)+1)$ $= (n+1)^2 + (n+1)$

5) Conclusion

11) Incomplete write to show body of proof only.
1) Give statement and method of proof ($5\left(2^{2n-1} + 3^{2n-1}\right)$)
2) Verify for at least one value of n
3) State clearly assumptions, givens, and show what you are trying to prove
4) Body of Proof:

\[
2^{2n+1} + 3^{2n+1} = 2^2 * 2*2^n - 3^2 * 3^{2n-1} = 2^2 * 2*2^n - 2*3^n - 3^2 * 3^{2n-1} + 3^2 * 3^{2n-1}
\]
\[
= 2^2 (2^{2n-1} + 3^{2n-1}) + 3^{2n-1}(3^2 - 2^2)
\]
Notice that 5 divides the first term by assumption for n and it divides the second term since $9-4 = 5$.
Conclusion is :……….