Answers to Math 2534 Test 3:

Problem 1:
A) To prove that \(f(x) \) is one to one we will assume \(f(a) = f(b) \) and show that \(a = b \).

Consider
\[
\frac{8a}{a-3} = \frac{8b}{b-3}
\]
\[
8a(b-3) = 8b(a-3)
\]
\[
8ab - 24a = 8ab - 24b
\]
\[-24a = -24b
\]
\[a = b
\]

B) To prove that \(f(x) \) is onto we will show that for each \(b \) in the co-domain there exist an \(a \) in the domain so that \(f(a) = b \).

\[
b = \frac{8a}{a-3}
\]
\[
b(a-3) = 8a
\]
\[
ba - 3b = 8a
\]
\[
ba - 8a = 3b
\]
\[a = \frac{3b}{b-8}
\]

\(f(x) \) is not onto since no element in the domain maps to \(b = 8 \).

C) In order to create an inverse function the \(f: \mathbb{R} - \{3\} \) into \(\mathbb{R} - \{8\} \) and
\[
f^{-1}(x) = \frac{3x}{x-8}
\]

Problem 2: a) \(f(S) \) is a function since it is defined for all elements in the domain and for each input there is only one output (it is also one to one)

b) \(G(f \circ g) = \{(a, c), (b, b), (c, d), (d, a)\} \)
c) \(G(f \circ g)^{-1} = \{(c, a), (b, b), (d, c), (a, d)\} \)

Problem 3: Theorem: If \(f(x) \) is invertable then \(f(x) \) is one to one.

Proof: To show that \(f(x) \) is one to one we will show that if \(f(a_1) = f(a_2) \), then \(a_1 = a_2 \). Consider the following
\[
a_1 = f^{-1}(b_1) = f^{-1}(f(a_1)) = f^{-1}(f(a_2)) = (f^{-1} \circ f)(a_2) = a_2
\]
where \(f(a_1) = b_1 \) since the composition of \(f \) and its inverse is the identity function. Therefore since we have shown that \(a_1 = a_2 \), we have shown that \(f(x) \) is one to one.
Problem 4: To show that R is an equivalence relation, we must show that it is reflexive, symmetric, and transitive.

Reflexive: Does aRa? Does $7|a-a$? If $7q = a-a$ then $7q = 0$ and $q = 0$.

Symmetric. If aRb then show that bRa. Since $7q = b-a$, then we have that

$7k = a-b$ where $k = -q$ and k is an integer. Therefore, by definition of division we have that 7 divides $a-b$ and bRa.

Transitive: If aRb and bRc, we will show that aRc.

We have that $7q = b - a$ and $7d = c - b$, now add them together to get $7q + 7d = (b - a) + (c - b) = (c - a)$ so we have that $7k = (c - a)$ where $k = q + d$ is an integer and by definition of division aRc.

Therefore R is an equivalence relation.

Problem 5: In order to show that R is transitive I need to show that if ARB and BRC then ARC.

Since ARB, there is a bijection f that maps from A to B and since BRC there is a bijection g that maps from B to C. We have proved earlier that if f and g are both bijections then the composition of g and f, $g \circ f$ is also a bijection and maps A to C so ARC. Therefore R is transitive.

Problem 6: a) $R = \{(3,3), (4,4), (6,6), (12, 12), (16, 16), (24,24), (3, 6), (3,12), (3, 24), (4,16), (4, 12), (4, 24), (6, 12), (6,24)\}$

b) Diagram in class

Problem 7: Anti symmetric: ARB and BRA if and only if $A=B$.

If aRb then $a = b^k$ and if bRa then $b = a^n$, where k and n are positive integers. Since $a = b^k$, then $a = (a^n)^k = a^{nk}$ and the only way this can be true is for $n=1, k=1$ and $a = b$. So R is anti-symmetric.

Problem 8: Domain and Range is A

Problem 9: Suppose the first person choose a card and it is black, then a second person chooses and card. This card could be black and you are done or the card could be red. Then a third person chooses a card. It must be black or red. Either way, you have two cards of the same color. Therefore 3 people must be at the party to guarantee that at least two people will each choose a card of the same color.