Math 2534_Solutions Homework on Functions

Problem 1:
 Explain the mistake in the following proof:
 Theorem: If \(f(x) = 4x + 3 \) for all integers, Then \(f(x) \) is one to one.
 Proof: Suppose any integer \(x \) is given. Then by definition of \(f \), there is only one possible value for \(f(x) \), namely \(4x + 3 \). Hence \(f(x) \) is one to one.
 Solution:
 This proof establishes only that \(f(x) \) is a function which is not the same as being one to one.

Problem 2:
 Define If \(A = \{a, b, c\} \), then define \(F : P(A) \rightarrow \mathbb{Z} \) as follows: For all subsets \(S \) in \(P(A) \), \(F(S) = n(S) \) (ie. the number of elements in \(S \))
 a) Is \(F \) one to one? Prove or give a counter example
 b) Is \(F \) onto? Prove or give a counter example
 Solution: \(F \) is defined as follows: \(F(\emptyset) = 0 \), \(F(\{a\}) = F(\{b\}) = F(\{c\}) = 1 \), \(F(\{a,b\}) = F(\{b,c\}) = F(\{a,c\}) = 2 \), \(F(\{a,b,c\}) = 3 \). Since the Range is contained in the co-domain, \(F \) is not onto and \(F \) is not one to one since more than one element in the domain maps to the same element in the Co-domain.

Problem 3:
 Let \(A \) and \(B \) be finite sets and \(n(A) = n(B) \). If \(f \) maps \(A \) to \(B \), then \(f(x) \) is one to one if and only if \(f(x) \) is onto.
 Solution: Proof:
 Part A: If \(f(x) \) is one to one then \(f(x) \) is onto.
 Proof by contradiction: Assume that \(f(x) \) is not onto. Then there is an element in the Co-domain that is not in the image of \(f(x) \). Since \(n(A) = n(B) \), there are at least two elements in \(A \) that map to the same element in \(B \). This contradicts that \(f(x) \) is one to one. Therefore \(f(x) \) must be onto.

Part B: If \(f(x) \) is onto, then \(f(x) \) is one to one.
 Proof: The image of \(A \) under \(f \) is \(f(A) \). Since \(f(x) \) is onto then \(n(f(A)) = n(B) = n(A) \). So \(f \) is also one to one.
 Therefore \(f(x) \) is one to one if and only if \(f(x) \) is onto.
Problem 4:
Determine if the following is true or false. Justify your conclusion.

a) Given that \(f: A \rightarrow B \) and \(f^{-1} \) exists, then for all subsets \(S \) of \(B \)
\[f(f^{-1}(S)) \subseteq S \]

Solution:
\[(f \circ f^{-1})(S) = (ID)(S) = S \subseteq S \]

Problem 5:
How many people must be in a room to guarantee that at least 4 people have the same last initial. **Answer is 79 people**

Problem 6:
If \(f: (\mathbb{Z}_{mod5}) \rightarrow (\mathbb{Z}_{mod5}) \) when \(f(x) = [3x + 1] \), determine if \(f \) is a bijection.

Solution:
\[
\begin{align*}
f[0] &= [1] \\
f[3] &= [0] \\
\end{align*}
\]