2534 Solutions for Equivalence Relation worksheet:

1) a) R1 is Reflexive and Symmetric
b) R2 is Transitive
c) R3 is Symmetric
d) R4 is Symmetric

2) $R = \{(1,1),(4,4),(1,4),(4,1),(3,3),(5,5),(3,5),(5,3),(2,2)\}$

3) Theorem: $a \equiv b \mod d$ is an equivalence relation on the integers:
 ie. $a \ R \ b$ if and only if $d \mid (a-b)$
 Proof:
 R is reflexive if aRa for all integers a. If aRa, then $d \mid a-a$. By definition of divisible there must exist an integer q such that $dq = a-a$, Let $q = 0$ and the definition is valid. Therefore R is reflexive.

 R is symmetric if for all integers a, b, if aRb, then bRa. If it true that aRb then $d \mid a-b$ and by definition of divisible $dp = a-b$ for some integer p. Multiply both sides by -1 to get $d(-p) = b-a$. So $dm = b-a$ where $m = -p$ is an integer. By definition of divisible we have that $d \mid b-a$ so bRa and R is symmetric.

 R is transitive if for all integers a, b, c, if aRb and bRc, then aRc. If it is true that aRb and bRc then by definition of divisible we have that $dk = a-b$ and $dh = b-c$. So adding $dk + dh = a-b + b-c$, we get $d(k+h) = a-b + b-c$. Therefore $dm = a-c$, where $m = k+h$ is an integer and $d \mid a-c$ by definition of divisible and aRc.

 Therefore we have shown that the relation R is an equivalence relation.

 The partition is $Z = [0] \cup [1] \cup [2] \cup [3] \cup \ldots \cup [d-1]$

4) Theorem: If relations R and S are each transitive, then $R \cap S$ is also transitive.
 Proof: If (x,y) and (y,z) are elements of $R \cap S$ then (x,y) and (y,z) are elements of R and (x,y) and (y,z) are elements of S. Since R and S are each transitive, (x, z) is in R and (x, z) is in S which means that (x, z) is in the intersection.