Math 2534 Solutions:
Worksheet on Equivalence Relations and Partial Order

1) A) Prove that \(a \equiv b \mod d \) is an equivalence relation on the integers.

By equivalent form of congruence we have that \(aRb \iff d \mid (a - b) \)

Proof: Reflexive: \(aRa \) since we can show that \(d \mid (a - a) \).

By definition of divisible we must have an integer \(q \), so that \(dq = a - a \).
If we let \(q = 0 \) we have satisfied the definition.

Symmetric: If \(aRb \), then we must show that \(bRa \). We are given that \(d \mid (a - b) \),
so there exist a \(k \) so that \(dk = a - b \). If we multiply both sides by \(-1\), we will get \(d(-k) = b - a \).
If we let \(p = -k \), we have that \(p \) is an integer and \(d \mid (b - a) \) by definition of divisible. Therefore \(bRa \) and \(R \) is symmetric.

Transitive: If \(aRb \) and \(bRc \), we must show that \(aRc \). We are given that \(d \mid (a - b) \) and \(d \mid (b - c) \), so there exist integers \(n \) and \(m \) so that \(dn = a - b \) and \(dm = b - c \) by definition of divisible. By adding \(dn + dm = a - b + b - c \), we have \(d(n + m) = a - c \). Let \(r = n + m \) so that \(dr = a - c \) and \(r \) is an integer.
Therefore \(d \mid (a - c) \) by definition of divisible and \(R \) is transitive.

B) Give the partition of integer induced by this congruency.
(Hint: Look at modular arithmetic)

2) If \(R \) and \(S \) are both transitive then prove that the intersection is also transitive.

Proof:
If \((x, y), (y, z) \in R \cap S \), then \((x, y), (y, z) \in R \) and \((x, y), (y, z) \in S \)
Since \(R \) and \(S \) are both transitive, \((x, z) \) is in \(R \) and \((x, z) \) is in \(S \).
Therefore \((x, z) \) must be in the intersection \(R \cap S \). So by definition of transitive, we have that \(R \cap S \) is also transitive.
3) Given a set A, for any a, b in A, aRb if and only if a divides b. Verify that R is a partial order on A.

Proof: Reflexive: We need to show that aRa, we need to show there exists an integer q so that $a|a$, or by definition of divisible $aq = a$. We can let $q = 1$ to satisfy the definition.

Ant-symmetric: If it is given that aRb and bRa, then we need to show that a = b. We are given that $a|b$ and $b|a$, so by definition of divisible there must be integers k and d so that $ak = b$ and $bd = a$. This will give us $(ak)d = a$, so that $a(kd) = a$. Since k and d are integers, we have that $kd = 1$ which gives that $k = 1$ and $d = 1$. Therefore $a = b$ and R is ant-symmetric.

Transitive: If it is given that aRb and bRc, then we must show that aRc. By definition of divisible we have integers q and p so that $aq = b$ and $bp = c$. This will give us $(aq)p = c$, which becomes $a(qp) = c$. Let $m = qp$ (which is an integer) to get $am = c$. So by definition of divisible we have that $a|c$ and aRc. Therefore R is transitive.

4) If $A = \{2, 3, 4, 6, 8, 9, 12, 18\}$ For all a, b in A, aRb iff a divides b.

Draw a Hasse Diagram representing R.

Solution: I can not easily come up with a electronic graph here, so I will give you the Relation in ordered pairs.

$R = \{(2, 2), (3, 3), (4, 4), (6, 6), (8, 8), (9, 9), (12, 12), (18, 18), (2, 4)(2, 6)\}

(2, 8), (2, 12), (2, 18), (3, 6), (3, 9), (3, 12), (3, 18), (4, 8), (4, 12), (6, 12)

(6, 18), (9, 18)\}$