Math 2534 Solution to Homework 10 Fall 2013

Problem 1:
A) Prove that \(a \equiv b \mod 6 \) is an equivalence relation \(R \) on the integers.

This means that \(aRb \) if and on if \(6|(a-b) \)

Proof: To prove that the relation \(R \) is an equivalence on the integers we must prove that \(R \) is reflexive, symmetric, and transitive.

Reflexive: To show that \(aRa \), we must show that \(6|(a-a) \). We must show that there exist an integer \(q \) such that \(6q = a-a \). In order for \(6q = 0 \), \(q = 0 \) and this will satisfy the definition of divisible and \(aRa \). And \(R \) is reflexive.

Symmetric: Given that \(aRb \), we need to show that \(bRa \). By definition of divisible we have that \(6k = a-b \). By multiplying both sides by \((-1)\) we will have \(6(-k) = b-a \). Let \(p = -k \) where \(p \) is an integer, then by definition of divisible we have that \(bRa \) and \(R \) is symmetric.

Transitive: Given that \(aRb \) and \(bRc \), we need to show that \(aRc \). By definition of divisible we have that \(6q = a-b \) and \(6p = b-c \).

Now consider \(6q + 6p = a-b + b-c = a-c \). Let \(k = q + p \) to get \(6k = a-c \).

By definition of divisible we have that \(6 \) divides \(a-c \) and \(aRc \). Therefore \(R \) is transitive.

B) Give the partition of integers induced by this congruency.

Problem 2:
If \(R \) and \(S \) are both symmetric then prove that the intersection is also symmetric.

Proof:
We are given that \(S \) and \(R \) are each symmetric.

Consider the point \((a, b)\) in \(S \cap R \). Then by definition of intersection we know that \((a,b)\) is in \(S \) and \((a,b)\) is in \(R \). Since \(S \) is symmetric we know that \((b,a)\) is also in \(S \) and similarly we know that \((b,a)\) is in \(R \). Therefore by definition of intersection we know that \((a,b)\) must be in \(S \cap R \). Therefore \(S \cap R \) is also symmetric.

Problem 3:
Set \(A = \{a, b, c, d, e, f\} \) is partitioned into \(A = A = \{a\} \cup \{c, e, f\} \cup \{d, b\} \).

Give the equivalence \(R \) that produces this partition.

\[R = \{(a,a),(c,c),(e,e),(f,f),(e,c),(c,e),(c,f),(f,c),(e,f),(f,e),(d,d),(b,b),(d,b),(d,b)\} \]
Problem 4:
Determine if the following statements are correct. If not, then explain why not.
a) \(f : X \rightarrow Y \) is onto if and only if \(\forall x \in X, \exists y \in Y \) so that \(f(x) = y \).
FALSE: This is just the definition of a function.

b) \(f : X \rightarrow Y \) is one to one if and only if \(\forall x \in X, \exists y \in Y \) so that \(f(x) = y \).
FALSE: This is just the definition of a function.

c) \(\) Let \(f : X \rightarrow Y \). A sufficient condition for \(f(x) \) to be one to one is that \(\forall y \in Y, \) there is at most one \(x \in X \), with \(f(x) = y \).
TRUE:
d) \(f : X \rightarrow Y \) is onto if and only if the range and the co-domain are the same.
TRUE:

Problem 5: Let the function \(h(x) \) map set \(A \) to set \(B \). Let \(C \) and \(D \) be disjoint subsets so that \(C \cup D = A \). Define functions \(f : C \rightarrow B \) and \(g : D \rightarrow B \) so that \(h(x) = f(x) \) for all \(x \) in \(C \) and \(h(x) = g(x) \) for all \(x \) in \(D \). If \(f(x) \) is one to one and \(g(x) \) is onto, is \(h(x) \) a bijection? Justify your conclusion. (Hint: look at examples)
FALSE: Let \(C = \{ 1, 2 \} \), \(D = \{ 3, 4, 5, 6 \} \), \(B = \{ a, b, c \} \) Consider the following example.
\(f : C \rightarrow B \) so that \(f(1) = a \) and \(f(2) = b \)
\(g : D \rightarrow B \) so that \(g(3) = a \), \(g(4) = b \), \(g(5) = b \) and \(g(6) = c \)
Notice that \(f \) is one to one and \(g \) is onto but \(h(x) \) cannot be one to one and is not a bijection.

Problem 6: Explain the mistake in the following proof:
Theorem: If \(f(x) = 4x + 3 \) for all integers, then \(f(x) \) is one to one.

Proof: Suppose any integer \(x \) is given. Then by definition of \(f \), there is only one possible value for \(f(x) \), namely \(4x + 3 \). Hence \(f(x) \) is one to one.

Solution: This only confirms that \(f(x) \) is a function. It does not consider the concept of one to one.

Problem 7:
How many students have to be in the same class to guaranteed that 8 students in that class have the same last initial? You would need 183 people.

Problem 8:
State the **precise formal definition** for two sets \(A \) and \(B \) to have the same cardinality.
Two sets have the same cardinality if and only if there exist a bijection that maps one set to the other.