1) Let \(A = \{a,b,c\} \), \(B = \{x,y\} \) and \(C = \{1,2\} \). Find the following:
 a) \(A \times B \)
 b) \(C \times B \)
 c) \(C \times A \)

2) Prove or give a counter example.
 Theorem: For all sets \(A \) and \(B \), \(A \times B = B \times A \)

3) Find the power set for:
 a) \(B = \{1,2,3,4\} \)
 b) \(A = \{\emptyset, \{\emptyset\}\} \)

4) Given the power set \(P = \{\emptyset, \{y\}\} \), what was the original set?

5) If \(A = \{h, k, a, i\} \) and \(B = \{a, d, h, k\} \) find the symmetric difference \(A \oplus B \).

6) Draw Venn Diagrams to illustrate the following:
 a) \((A - B) \cup C \)
 b) \(A^C \cap B \cap C^C \)
 c) \((A - B) \cup (B - C) \)

7) If the Universal set \(U = \{a,b,c,d,e,f,g,h\} \) and \(A = \{a,d,e,f,h\} \) and \(B = \{b,c,d,e,f,g\} \), find the following:
 a) \(A \oplus B \)
 b) \(A \cap B^C \)
 c) \(A - B \)
 d) \(A^C \cup B^C \)

8) If \(A \times B = \{(a,b),(b,b),(c,b),(a,a),(b,a),(c,a)\} \), find the elements in sets \(A \) and \(B \).

9) Using elements of sets, prove the following or give a counter example.
 a) For all sets \(A, B \) and \(C \), if \(A \subseteq B \) and \(C \subseteq B \), then \(A \cup C \subseteq B \)
 b) For all sets \(A \) and \(B \), \((A \cup B)^C = A^C \cap B^C \)
 c) For all set \(A \) and \(B \), \((A - B) = A \)