Problem 1:
Theorem: R is an equivalence relation on all sets when ARB if and only if the exist a bijection from A to B.

Problem 2: Given that \(A = \{ a, b, c, d \} \) and the relation \(R \) is defined on A to be
\[R = \{(a, a), (b, b), (c, c), (b, c), (c, a)\} \]
a) Add the minimal number of elements to \(R \) so that \(R \) will be reflexive.
b) Is \(R \) anti-symmetric? If not then make the minimal additions or deletions of elements so that \(R \) is anti-symmetric.
c) Add the minimal number of elements to \(R \) so that \(R \) is symmetric.
d) Add the minimal number of elements to \(R \) so that \(R \) is transitive.

Problem 3:
Given the set \(A = \{ 2, 3, 4, 6, 12, 16, 18 \} \), draw the Hasse Diagram that illustrates the partial order relation \(R \) that is defined as follows. For all elements \(a \) and \(b \) in \(A \), \(aRb \) if and only if \(a \mid b \).

Problem 4:
Verify that \(R \) is a partial order on all sets when ARB if and only if \(A \subseteq B \).

Problem 5: Big O definition:
If \(f(x) \) and \(g(x) \) are real valued functions then \(f(x) \) is Big O of \(g(x) \) iff there exist constants \(C \) and \(K \) so that \(|f(x)| \leq C|g(x)|, \forall x > K \)
Let \(f(x) = 2x^2 + 3x + 6 \) and \(g(x) = x^2 \) and verify using the definition above that \(f(x) \) is Big O of \(g(x) \).