Math 2534 Methods of Proofs 2

Instructions: Either provide a proof or a counterexample for each of the following.

1) For all positive integers \(n \), if \(n \) is prime then \(n \) is odd. For \(n > 2 \)

2) For all integers \(a, b, \) and \(c \), if \(a \mid b \) and \(a \mid c \), then \(a \mid (b + c) \).

3) For all integers \(a, b, \) and \(c \), if \(a \) does not divide \(bc \) then \(a \) does not divide \(b \)
 Prove by contrapositive.

4) An integer \(n \) is even if and only if \(n^2 \) is even.

5) Prove that \(\sqrt{2} \) is irrational.

6) Given that \(n, a, b \) are integers. If \(n \mid a \) and \(n \mid (a + b) \), Then \(n \mid b \).

7) Suppose \(a \) and \(b \) are integers. The product \(ab \) is odd if and only if, \(a \) and \(b \)
 are both odd.

8) If \(ab \mid c \), Then \(a \mid c \) and \(b \mid c \). for integers \(a, b, c \)

9) If \(a \mid b \) and \(c \) then \(a \mid b \) for integers \(a, b, c \)

10) Given an integer \(n \), \(n \) is even iff \(7n + 4 \) is even.

11) If \(a, b, c \) are prime numbers greater than 2, then \(a^3 + b^3 \neq c^3 \)

12) The sum of a rational and irrational number is irrational.