Math 2214: Solution Homework 1 Spring 2016 sec 1.1-2.1

1) You are given that \(y(t) = 2e^{-4t} \) is a solution for the differential equation \(y' + ky = 0 \) with the initial value (boundary condition) \(y(0) = y_0 \). Solve for \(k \) and \(y_0 \) so that this solution is valid.

Solution:

\[y(t) = 2e^{-4t} \]
\[y'(t) = -8e^{-4t} \]

Now substitute into \(y' + ky = 0 \)

\[y' + ky = 0 \]
\[-8e^{-4t} + 2ke^{-4t} = 0 \]

\(e^{-4t}[2k - 8] = 0 \) and \(e^{-4t} \neq 0 \) so \(2k - 8 = 0 \) so \(k = 4 \)

Using the initial value \(y(0) = y_0 \) and the solution \(y(t) = 2e^{-4t} \) we have \(y_0 = 2e^0 \) so \(y_0 = 2 \).

2) Using the method of isoclines, sketch the direction field filaments (not the solutions) for the following: (Do about 4 different Isoclines with filaments for each DE)

a) \(y' = t^2 + y \) for \(t \geq 0, y \geq 0 \)

Let the slope \(y' = C \) so that \(C = t^2 + y \) and \(y = C - t^2 \) is the isocline for some value of \(C \). Let \(C = 0, C = 1, C = 3, C = 5 \)

![Isocline Diagram](image)

b) \(y' = ty \) for \(t \geq 0, y \geq 0 \)

Let the slope \(y' = C \) so that \(C = ty \) and \(y = C/t \) is the isocline for some value of \(C \). Let \(C = 0, C = 1, C = 3, C = 5 \)

![Isocline Diagram](image)
3) The following DE is autonomous. Find the equilibrium isoclines and sketch them with filaments (Do not try to sketch the actual solutions for problem below)

\[y' = y^2 + 8y + 12 \quad \text{over } (-\infty, \infty) \]
Let the slope \(y' = C \) and let \(C = 0 \).
We now have \(0 = y^2 + 8y + 12 = (y+6)(y+2) \), so \(y = -6 \) and \(y = -2 \) are the equilibrium solutions.

\[\begin{array}{c|c}
\text{t} & 0 \\
\hline
\text{y} & -2 \\
\hline
\end{array} \]

4) Which of the following differential equations are linear or non-linear?
Put the linear differential equations in proper linear form.

a) \[\frac{dy}{dt} = e^{2t} - y \] Linear \(y' + y = e^{2t} \)

b) \[\frac{dy}{dt} = \frac{y}{t} \] Linear \(ty' - y = 0 \)

c) \[ty' - \ln y = t^2y \] Non - Linear since \(ty' - t^2y = \ln |y| \) and \(\ln |y| \neq g(t) \)

d) \[y'' + e^t y' = t^2 y^2 \] Non-linear since exponent greater than 1.

e) \[y^{(3)} + \sin(t)y' = t \] Non-linear since there is a product of the solution and its derivative.
5) Determine the DE that is represented by this direction field.
 a) \(y' = (-y - 2)(y - 1) \)
 b) \(y' = (y - 1)(y + 2) \)

Since both Diff Eqs have the same equilibrium solutions, \(y = 1 \) and \(y = -2 \), we need to

test other isoclines. For instance test \(y = 4 \).

a) \(y' = (-y - 2)(y - 1) = (-6)(3) = -18 \)

b) \(y' = (y - 1)(y + 2) = (3)(6) = 18 \)

Equation a) satisfies this test since \(y = 4 \) has negative slopes at each point and in
equation b) has positive slopes at each point on \(y = 4 \).