1. Let \(\{e_1, e_2\} \) be the standard basis of \(\mathbb{C}^2 \), and let \(\alpha: \mathbb{C}^2 \to \mathbb{C}^2 \) be a \(\mathbb{C} \)-linear transformation satisfying \(\alpha(e_1 + ie_2) = 2e_1 \) and \(\alpha(e_1 - ie_2) = 2e_2 \). What is the matrix of \(\alpha \) with respect to the basis \(\{e_1, e_2\} \)? (2 points)

2. Let \((|)\) denote the standard scalar product on \(\mathbb{C}^d \) and let \(A \in M(d, \mathbb{C}) \) (the \(d \times d \) matrices, entries \(\mathbb{C} \)). Prove that \((Au \mid Av) = (u \mid v) \) for all \(u, v \in \mathbb{C}^d \) if and only if \(AA^* = A^*A = I_d \) (the identity \(d \times d \) matrix). (3 points)

3. Let \(G = \langle g \rangle \) be the infinite cyclic group. Show that there exists a representation of \(G \) which is not unitarizable (consider one-dimensional representations). (2 points)

(3 problems, 7 points altogether)