Fifth Homework Solutions

2. Exercise 3.6 on page 45.

Let \(G \) be the group of complex matrices \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) such that \(|a| = 1\), with the usual topology.

(a) Is this group compact?
(b) Show that the fundamental representation of \(G \) on \(\mathbb{C}^2 \) is reducible, but not completely reducible.
(c) Find the endomorphisms of \(\mathbb{C}^2 \) that commute with the fundamental representation of \(G \).

(a) The group is not compact because it is not bounded, in particular \(|b|\) can be arbitrarily large.
(b) For convenience, we write column vectors as row vectors. The fundamental representation is reducible because \(\mathbb{C}(1,0) \) is a one-dimensional invariant subspace. We note that \(\mathbb{C}(1,0) \) is the only one-dimensional invariant subspace. Indeed if \(\mathbb{C}v \) is a one-dimensional invariant subspace, then in particular \(v \) is an eigenvector of \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). However \(v \) is the only eigenvector of this matrix. Thus \(\mathbb{C}v \) cannot have an invariant direct complement.
(c) We need to find the matrices which commute with all elements of \(G \). Let \(e_{pq} \) denote the matrix units, so \(e_{pq} \) has 1 in the \((p,q)\)th position and zeros elsewhere. Suppose \(\alpha := \sum_{i,j} a_{ij} e_{ij} \) commutes with all elements of \(G \), where \(a_{ij} \in \mathbb{C} \) for all \(i, j \). Then in particular, \(\alpha e_{pq} = e_{pq} \alpha \) for all \(p \leq q \). Using \(e_{pq} e_{ij} = e_{pi} \delta_{qi} \), we find that

\[
 a_{1p} e_{1q} + a_{2p} e_{2q} = a_{1q} e_{p1} + a_{2q} e_{p2}.
\]

Then \(p = q = 1 \) yields \(a_{12} = a_{21} = 0 \), and \(p = 1, q = 2 \) yields \(a_{11} = a_{22} \). This shows that the matrices which commute with all elements of \(G \) are precisely scalar multiples of the identity matrix.

4. Exercise 3.7(b) on page 45.

Find the left and right invariant measures on the group of affine transformations of \(\mathbb{R} \).

The affine group \(G \) consists of matrices

\[
 \{m(x,y) := \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \mid x,y \in \mathbb{R}, x \neq 0 \}.
\]

We’ll identify \(G \) via \(m \) with \(\{(x,y) \mid x,y \in \mathbb{R}, x \neq 0 \} \).
First we find left Haar measure. We need to find a measure which is invariant under the map $(x, y) \mapsto m(p, q)(x, y) = (px, py + q)$. We claim that $\mu(R) := \iint_R \frac{dydx}{x^2}$ will do, for every measurable subset R of G. It will be sufficient to check this on rectangular regions $(a, b) \times (c, d)$. Note that the map sends rectangular regions to rectangular regions, so we need to prove that

$$\int_a^c \int_b^d \frac{dydx}{x^2} = \int_{pa}^{pc} \int_{pb+q}^{qd+q} \frac{dydx}{x^2}.$$

This is true because both sides are $(1/a - 1/c)(d - b)$.

Now we prove right invariance. We claim that $\mu(R) := \iint_R \frac{dydx}{|x|}$ will do, for every measurable subset of G (we need the $|x|$, because x can take negative values, and by definition of Haar measure, it cannot take negative values). It will be sufficient to check this on rectangular regions $(a, b) \times (c, d)$. By breaking up the region into parts where x is positive and x is negative, we can reduce to the case $a, c > 0$. Now the general element of G is the product of elements of the form $(p, 0)$ and $(1, q)$, so it will be sufficient to show that μ is invariant under these two types of elements. First we consider the map $(x, y) \mapsto (x, y)m(p, 0) = (px, y)$. Note that this map sends rectangles to rectangles, so we need to prove

$$\int_a^c \int_b^d \frac{dydx}{x} = \int_{pa}^{pc} \int_{pb}^{pd+q} \frac{dydx}{x}.$$

This is true because both sides are $(d - b)\ln(c/a)$. Now we consider the map $(x, y) \mapsto (x, y)m(1, q) = (x, qx + y)$. Note that this map sends rectangles to parallelograms, so more care is required. We need to prove

$$\int_a^c \int_b^d \frac{dydx}{x} = \int_{b+qx}^{b+q} \int_{b+q}^{d+qy} \frac{dydx}{x}.$$

This is again true because both sides are $(d - b)\ln(c/a)$.