Tenth Homework Solutions

1. (a) Let \(s, t \in S \) and suppose \(st \notin S \). Then \(stx = 0 \) for some nonzero \(x \in R \). Then \(tx \neq 0 \) because \(t \) is a nonzero divisor, and hence \(stx \) because \(s \) is a nonzero divisor and \(tx \neq 0 \). It follows that \(S \) is a multiplicatively closed subset of \(R \). Obviously it contains 1 but not 0.

(b) Let \(r/s \in S^{-1}R \), where \(r \in R \) and \(s \in S \). If \(r \) is a zero divisor, then \(rx = 0 \) for some nonzero \(x \in R \), hence \((r/s)(x/1) = 0 \) and \(x/1 \neq 0 \). This shows that \(r/s \) is a zero divisor. On the other hand if \(r \) is not a zero divisor, then \(r \in S \) by definition of \(S \) and thus \(s/r \in S^{-1}R \). Since \((r/s)(s/r) = 1 \), we see that \(r/s \) is a unit and we’re finished.

2. Let \(K = \ker \alpha \) and \(J = \ker \beta \). Then \(R/K \cong \mathbb{Z}/2\mathbb{Z} \), a field, and we see that \(K \) is a maximal ideal of \(R \). Similarly \(J \) is a maximal ideal of \(R \). Since \(|R/J| \neq |R/K| \), we see that \(J \neq K \) and hence \(J + K = R \). By the Chinese Remainder theorem, we see that

\[R/(I \cap J) \cong R/I \times R/J \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Q}. \]

It follows that there is a ring epimorphism \(\theta : R \rightarrow \mathbb{Z}/2\mathbb{Z} \times \mathbb{Q} \).

3. We need to show that if \(p/1 \) divides \((a/s)(b/t)\) in \(S^{-1}R \), then \(p/1 \) divides either \((a/s)\) or \((b/t)\). Since divisibility is not affected by multiplying by a unit, we may assume that \(p/1 \) divides \(ab/1 \), so \((p/1)(r/x) = ab/1 \), for some \(r/x \in S^{-1}R \). Since \(R \) is an integral domain, this tells us that \(pr = abx \). Since \(p \) is prime, we see that \(p \) divides \(a \) or \(b \) or \(x \). If \(p \) divides \(x \), then \(p \) is a unit which contradicts the hypothesis that \(p \) is a prime, so without loss of generality we may assume that \(p \) divides \(a \). We conclude that \(p/1 \) divides \(a/1 \) and the result follows.

4. Exercise 9.4.7 on p. 311. Prove that \(\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C} \).

As in homework 9 problem 3, define \(\theta : \mathbb{R}[x] \rightarrow \mathbb{C} \) by \(\theta(r) = r \) for \(r \in \mathbb{R} \) and \(\theta(x) = i \). Then \(\theta \) is onto. Also \(\theta(x^2 + 1) = (\theta x)^2 + \theta(1) = 0 \), so \(x^2 + 1 \subseteq \ker \theta \). Suppose \(f \in \mathbb{R}[x] \) and \(\theta(f) = 0 \). By the division algorithm, we may write \(f = (x^2 + 1)q + r \) where \(q, r \in \mathbb{R}[x] \) and deg \(r \leq 1 \). Then \(\theta(r) = 0 \). Write \(r = ax + b \) where \(a, b \in \mathbb{R} \). Then \(\theta(r) = a + ib \); this can be 0 only when \(a = b = 0 \). This shows that \(f \in (x^2 + 1) \) and hence \(\ker \theta = (x^2 + 1) \). The result now follows from the fundamental homomorphism theorem.