1. Determine the inverse of \(h(x) = (x-4)^2 + 3; x < 4 \).

2. Suppose that the bacteria in a colony can grow unchecked, by the law of exponential change. The colony starts with 1 bacterium and doubles every half hour. In about how many hours will the population grow to 65,536?

3. Evaluate

 a. \(\lim_{x \to 1} \frac{\ln(x)}{3 - 3^x} \)

 b. \(\lim_{x \to 0} \frac{\tan(x)}{\cos(x)} \)

 c. \(\lim_{x \to 2} \frac{x^2 + 2}{x^2 - 4} \)

 d. \(\lim_{x \to \infty} (x + 1)^{\frac{1}{x}} \)

4. Let \(f(x) = 15x^2 \) and \(g(x) = e^{3x} \). Which grows faster?

5. Without using your calculators, find the exact value or write undefined, if impossible. Concisely explain your answer.

 a. \(\cos \left(\sec^{-1} \left(-\frac{\sqrt{3}}{2} \right) \right) \)

 b. \(\sin^{-1} \left(\sin \left(\frac{3\pi}{2} \right) \right) \)

6. Differentiate the following:

 a. \(y = \sec^{-1}(e^{3x}) \)

 b. \(y = (x^4 - 1)^{2x} \)
c. \(y = \sin^{-1}(\ln(5x^2 - 6x + 1)) \)

7. Evaluate the following:

a. \(\int \frac{(2^x)dx}{(4 + 8^x)} \)

b. \(\int_1^{10} \frac{\log^3(x^2)}{x} dx \)

c. \(\int_{\sqrt{3}}^{1} \frac{dy}{\sqrt{4 - y^2}} \)

d. \(\int_0^1 4x e^{x^2 + 1} dx \)

e. \(\int \frac{45t^2 dt}{4 + 9t^6} \)

8. Find the volume of the solid of revolution that is formed by revolving the region bounded by the graph of \(2x^2 \), \(y = 0 \), \(x = 0 \), and \(x = 1 \) about the y-axis