Controller Reduction for Large-scale Systems
by Krylov Projection Methods

Serkan Gugercin
Department of Mathematics, Virginia Tech, USA

Thanos Antoulas
Dept. of Electrical and Computer Eng., Rice University, USA

Chris Beattie
Department of Mathematics, Virginia Tech, USA

SIAM Conference on Computational Science and Engineering,
12-15 February, 2005, Orlando, FL, USA
1. Introduction and Problem Statement

2. Controller Reduction by Frequency-weighted Balancing

3. Controller Reduction by Krylov Projection
 (a) Selection of Interpolation Points
 (b) An Iterative Rational Krylov Projection

4. Numerical Examples

5. Conclusions and Future Directions
Consider an n^{th} order plant $G(s)$ with m inputs and p outputs:

$$G(s) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \Leftrightarrow \quad G(s) = C(sI - A)^{-1}B + D$$

An n_K^{th} order stabilizing controller $K(s)$:

$$K(s) = \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix} \quad \Leftrightarrow \quad K(s) = C_K(sI - A_K)^{-1}B_K + D_K$$

LQG, \mathcal{H}_∞ control designs $\Rightarrow n_K = n \Rightarrow$

(i) Complex hardware (ii) Degraded accuracy (iii) Degraded computational speed

Obtain $K_r(s)$ of order $r \ll n_K$ to replace $K(s)$ in the closed loop.
Controller reduction via frequency weighting

- Small open loop error $\|K(s) - K_r(s)\|_\infty$ not enough. \(\Rightarrow\)

- Minimize the weighted error:
 \[
 \|W_o(s)(K(s) - K_r(s))W_i(s)\|_\infty.
 \]

- How to obtain the weights $W_o(s)$ and $W_i(s)$?

- If $K(s)$ and $K_r(s)$ have the same number of unstable poles and if
 \[
 \|K(s) - K_r(s)\|G(s)[I + G(s)K(s)]^{-1}\|_\infty < 1, \text{ or}\]
 \[
 \|[I + G(s)K(s)]^{-1}G(s)[K(s) - K_r(s)]\|_\infty < 1,
 \]
 \(\Rightarrow\) $K_r(s)$ stabilizes $G(s)$.

• For stability considerations:
\[W_i(s) = I \quad \text{and} \quad W_o(s) = [I + G(s)K(s)]^{-1}G(s) \quad \text{or} \]
\[W_o(s) = I \quad \text{and} \quad W_i(s) = G(s)[I + G(s)K(s)]^{-1}. \]

• To preserve closed-loop performance:
\[W_i(s) = [I + G(s)K(s)]^{-1} \quad \text{and} \quad W_o(s) = [I + G(s)K(s)]^{-1}G(s). \]

• Solved by frequency-weighted balancing (Anderson and Liu [1989], Schelfhout and De Moor [1996], Varga and Anderson [2002]).

• Requires solving two Lyapunov equations of order \(n + n_K \).
\[
A_i\mathcal{P} + \mathcal{P}A_i^T + B_iB_i^T = 0, \quad A_o^T\mathcal{Q} + \mathcal{Q}A_o + C_o^TC_o = 0,
\]

• \(A_i, B_i: \quad K(s)W_i(s), \quad A_o, C_o: \quad W_o(s)K(s) \)

• Balance \(\mathcal{P} \) and \(\mathcal{Q} \).
Controller-reduction via Krylov Projection

- Given $2r$ interpolation points: $\{\sigma_i\}_{i=1}^r$ and $\{\mu_j\}_{j=1}^r$
- Set $V = \text{Ran} \left[(\mu_1 I - A_K)^{-1} B_K \cdots (\mu_r I - A_K)^{-1} B_K \right]$
- And $Z = \text{Ran} \left[(\sigma_1 I - A_K^T)^{-1} C_K^T \cdots (\sigma_r I - A_K^T)^{-1} C_K^T \right]$
- $K_r(s) := \begin{bmatrix} Z^T A_K V & Z^T B_K \\ C_K V & D_K \end{bmatrix}$ (with $Z^T V = I_r$)
- $T(s) = \text{full-order closed-loop}, \quad T_r(s) = \text{reduced-order closed-loop}$
- $K_r(s)$ interpolates $K(s)$ at $\{\sigma_i\}$ and $\{\mu_j\}$. Moreover,

\[T_r(s) \text{ interpolates } T(s) \text{ at } \sigma_i \text{ and } \mu_j \text{ for } i, j = 1, \ldots, r \]

- Gugercin et. al. [MTNS, 2004], Van Dooren et. al. [2004]
• Achieved while staying in numerically efficient Krylov-framework.

| How to choose interpolation points σ_i and μ_j? |

• **Starting point**: \mathcal{H}_2 error expression (Gugercin and Antoulas [2003])

• $K(s)$ with poles λ_i and $K_r(s)$ with poles $\tilde{\lambda}_j$

• $\phi_i := K(s)(s - \lambda_i) \big|_{s=\lambda_i}$ and $\tilde{\phi}_j := K_r(s)(s - \tilde{\lambda}_j) \big|_{s=\tilde{\lambda}_j}$.

$$
\|K(s) - K_r(s)\|^2_{\mathcal{H}_2} = \sum_{i=1}^{n} \phi_i \left(K(-\lambda_i) - K_r(-\lambda_i) \right) + \\
\sum_{j=1}^{r} \tilde{\phi}_j \left(K_r(-\tilde{\lambda}_j) - K(-\tilde{\lambda}_j) \right).
$$

• **Open loop error** due to mismatch at $-\lambda_i$ and $-\tilde{\lambda}_j$

$$
\implies \text{Arrange } \sigma_i \text{ and } \mu_j \text{ so that } \sigma_i = -\lambda_i \quad \text{and} \quad \mu_j = -\tilde{\lambda}_j
$$

• As good as/better than balancing: Gugercin and Antoulas [2003]
Optimal \mathcal{H}_2 approximation problem

- Find $K_r(s)$ that minimizes $\|K(s) - K_r(s)\|_{\mathcal{H}_2}$

- Meier and Luenberger [1967]
 First-order necessary conditions:

\[
K_r(s)|_{s=-\hat{\lambda}_i} = K(s)|_{s=-\hat{\lambda}_i} \quad \text{and} \quad \frac{dK_r(s)}{ds}|_{s=-\hat{\lambda}_i} = \frac{dK(s)}{ds}|_{s=-\hat{\lambda}_i}
\]

- $\hat{\lambda}_i =$ poles of $K_r(s)$

- Requires successive rational Krylov steps
An Iterative Rational Krylov Iteration: (Gugercin, Antoulas and Beattie [2004])

1. Choose σ_i for $i = 1, \ldots, r$.

2. $V = \text{Span} \left[(\sigma_1 I - A_K)^{-1} B_K \cdots (\sigma_r I - A_K)^{-1} B_K \right]$,

3. $Z = \text{Span} \left[(\sigma_1 I - A_K^T)^{-1} C_K^T \cdots (\sigma_r I - A_K^T)^{-1} C_K^T \right]$, $Z^T V = I_r$.

4. while [relative change in σ_j] $> \epsilon$
 (a) $A_r = Z^T A_K V$,
 (b) $\sigma_i \leftarrow -\lambda_i(A_r)$ for $i = 1, \ldots, r$
 (c) $V = \text{Span} \left[(\sigma_1 I - A_K)^{-1} B_K \cdots (\sigma_r I - A_K)^{-1} B_K \right]$.
 (d) $Z = \text{Span} \left[(\sigma_1 I - A_K^T)^{-1} C_K^T \cdots (\sigma_r I - A_K^T)^{-1} C_K^T \right]$, $Z^T V = I_r$.

5. $A_r = Z^T A_K V$, $B_r = Z^T B_K$, $C_r = C_K V$

\[\Downarrow\]
Optimal \mathcal{H}_2 reduction via Krylov projection
• After convergence, first-order H_2 optimality constraints are satisfied.

• The optimal solution of a restricted H_2 minimization problem.

• How to modify for the controller reduction problem?

• How to reflect the weights $W_i(s)$ and $W_o(s)$, the closed loop information, in the reduction step?
• Let $W_i(s) = I$ and $W_o(s) = [I + G(s)K(s)]^{-1} G(s)$ ⇒

- $A_K \mathcal{P} + \mathcal{P} A_K^T + B_K B_K^T = 0$
- $A_w^T \mathcal{Q} + \mathcal{Q} A_w + C_w^T C_w = 0$.

unweighted Lyapunov eq.

weighted Lyapunov eq.

• In the rational Krylov setting: $\Pi = Z V^T$

• $Z = \mathcal{K}(A^T, C^T, \sigma_i)$,
 and
 $V = \mathcal{K}(A, B, \mu_j)$

• Z and σ_i: Reflect $W_o(s)$: the closed-loop information.
 $\sigma_i = jw_i$ over the region where $W_o(jw)$ is dominant

• V and μ_j: Obtain in an (optimal) open loop sense.
 μ_j: From an iterative rational Krylov iteration
An Iterative Rational Krylov Iteration for Controller Reduction:

1. Choose $\sigma_i = jw_i$, for $i = 1, \ldots, r$ where w_i is chosen to reflect $W_o(jw)$.
2. $Z = \text{Span } [(\sigma_1 I - A_{T_K}^{-1} C_{T_K}^T \cdots (\sigma_r I - A_{T_K}^{-1} C_{T_K}^T)]$ with $Z^T Z = I_r$.
3. $V = Z$
4. while [relative change in $\mu_j] > \epsilon$
 (a) $A_r = Z^T A_K V$
 (b) $\mu_j \leftarrow -\lambda_i(A_r)$ for $j = 1, \ldots, r$
 (c) $V = \text{Span } [(\mu_1 I - A_K)^{-1} B_K \cdots (\mu_r I - A_K)^{-1} B_K]$ with $Z^T V = I_r$.
5. $A_r = Z^T A_K V$, $B_r = Z^T B_K$, $C_r = C_K V$

$Z \Rightarrow K_r(s)$ includes the closed – loop information

$V \Rightarrow K_r(s)$ is optimal in a restricted \mathcal{H}_2 sense

\[\Pi = ZV^T \]
International Space Station Module 1R:

- \(n = 270 \). \(G(s) \) is lightly damped \(\Rightarrow \) Long-lasting oscillations.
- \(K(s) \) is designed to remove these oscillations. \(n_K = 270 \).

- Reduce the order to \(r = 19 \) using iterative Rational Krylov and to \(r = 23 \) using one-sided frequency weighted balancing
• **FWBR**: Frequency-weighted balancing with $W_i(s) = I$ and $W_o(s) = [I + G(s)K(s)]^{-1} G(s)$.

• **IRK-CL**: Iterative Rational Krylov - Closed Loop version: σ_i reflect the weight $W_o(s)$.

\[Bode Plot of W_o(s) = T(s) = [I + G(s)K(s)]^{-1} G(s) \]

• $\sigma_i = j \cdot \logspace(-1, 2, 10)$ rad/sec
ISS Example: Bode Plots of reduced closed-loop systems

Relative Errors

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_∞ error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T - T_{FW20}$</td>
<td>3.88×10^1</td>
</tr>
<tr>
<td>$T - T_{FW23}$</td>
<td>5.63×10^{-1}</td>
</tr>
<tr>
<td>$T - T_{IRK-CL}$</td>
<td>1.47×10^{-1}</td>
</tr>
</tbody>
</table>

Relative Errors

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_2 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T - T_{FW20}$</td>
<td>3.90×10^0</td>
</tr>
<tr>
<td>$T - T_{FW23}$</td>
<td>1.88×10^{-1}</td>
</tr>
<tr>
<td>$T - T_{IRK-CL}$</td>
<td>3.57×10^{-2}</td>
</tr>
</tbody>
</table>

Weighted Errors

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_2 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_i(K - K_{FW20})$</td>
<td>$0.984 < 1$</td>
</tr>
<tr>
<td>$W_i(K - K_{FW23})$</td>
<td>$0.416 < 1$</td>
</tr>
<tr>
<td>$W_i(K - K_{IRK-CL})$</td>
<td>$0.365 < 1$</td>
</tr>
</tbody>
</table>
Relative Errors

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_∞ Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K - K_{FW20}$</td>
<td>1.15×10^0</td>
</tr>
<tr>
<td>$K - K_{FW23}$</td>
<td>9.85×10^{-1}</td>
</tr>
<tr>
<td>$K - K_{IRK-CL}$</td>
<td>6.55×10^{-1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_2 Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K - K_{FW20}$</td>
<td>9.96×10^{-1}</td>
</tr>
<tr>
<td>$K - K_{FW23}$</td>
<td>9.71×10^{-1}</td>
</tr>
<tr>
<td>$K - K_{IRK-CL}$</td>
<td>1.08×10^{-2}</td>
</tr>
</tbody>
</table>
Evolution of the closed-loop \mathcal{H}_∞ error

Evolution of the closed-loop \mathcal{H}_2 error

Evolution of the unstable Pole

Evolution of the parameters throughout the iteration
An Unstable Model:

- $n=2000$. $K(s)$ of order $n_K = 2000$ stabilizes the model.

- $K(s)$ has four unstable poles.
- Reduce the order to \(r = 14 \): Stabilizing controller
- \(K_r(s) \) has 4 unstable poles as desired.
Conclusions and Future Work:

- Rational Krylov method for controller reduction
 - Guaranteed closed-loop matching while staying in Krylov framework
 - No Lyapunov equations need to be solved

- How to select the interpolation points?

- Iterative rational Krylov Algorithm: closed-loop version
 - σ_i reflect the weights (closed-loop information)
 - μ_j lead to an optimal open loop controller
 - Combination of open and closed loop reduction
 - Leads to small \mathcal{H}_2 and \mathcal{H}_∞ closed-loop errors and stabilizes for low-order controllers

- Optimality of the resulting controller in the closed-loop sense?

- How to extend to an iterative controller-plant reduction method?