1. Use the definition of the derivative to differentiate \(g(t) = \left(\frac{1}{t^2} \right) \)

2. a. Use the definition of the derivative to differentiate \(y = \sqrt{x + 4} \).

b. Then find the equation of the tangent line to this curve at the point (5,3).

3. Let \(f(x) = \begin{cases} x^2 + 1 & \text{if } x \geq 1 \\ 2x & \text{if } x < 1 \end{cases} \).

 a. Is \(f(x) \) continuous at \(x = 1 \)?

 b. Use the definition of the derivative to find \(f'(x) \) for \(x > 1 \).

 c. Use the definition of the derivative to find \(f'(x) \) for \(x < 1 \).

 d. Is \(f \) differentiable at \(x = 1 \)? Explain your answer.
4. Find the function f'(x). Then evaluate the derivative at each of the values of x given.

 a) \(f(x) = 1 - x - x^2 \); \(x = -1, 0 \)

 \[f'(-1) = \quad \text{__________} \]

 \[f'(0) = \quad \text{__________} \]

 b) \(f(x) = \frac{1}{\sqrt{x}} \); \(x = 4, 9 \)

 \[f'(4) = \quad \text{__________} \]

 \[f'(9) = \quad \text{__________} \]

5. The tangent line to the graph of a function f at (1,3) passes through the point (2,-4). What is \(f'(1) \)?

6. Suppose that the tangent line to the graph of \(y = f(x) \) at \(x = 2 \) is described by the equation \(y = 4x + 3 \). Find \(f(2) \) and \(f'(2) \).

 \[f(2) = \quad \text{__________} \quad f'(2) = \quad \text{__________} \]

7. Let \(f(x) \) be a quadratic polynomial function. Make a conjecture about the graph of \(f'(x) \) in general. Prove your conjecture.

8. Given the following graphs, match the graph of each function with its derivative.

 Graphs of functions:

 \[\text{A} \quad \text{B} \quad \text{C} \quad \text{D} \]

 Graphs of derivatives:

 \[\text{1} \quad \text{2} \quad \text{3} \quad \text{4} \]