Math 1205 Calculus – Sec. 2.4: The Precise Definition of a Limit

I. Review
 A. Informal Definition of Limit
 1. **Def**: Let $f(x)$ be defined on an open interval about a except possibly at a itself. If $f(x)$ gets arbitrarily close to L (as close to L as we like) for all x sufficiently close to a, we say that f approaches the limit L as x approaches a and we write: \[\lim_{x \to a} f(x) = L \] ("the limit of $f(x)$, as x approaches a, equals $L".")

 2. **Note**: (1) $x \to a$ means that you approach $x=a$ from both sides of a.
 (2) $f(a)$ does not have to be defined.

 B. Solving an inequality
 1. **Fill in the blanks**: To say that $|x-3| < 1$ means that x is less than _______ units from _______.
 2. Solve $|x-3| < 1$

II. Introduction
 A. Consider the function $f(x) = -2x+5$. How close to $a=1$, must we hold x to be sure that $f(x)$ lies within 1.5 units of $f(a)=3$?

 ![Graph of $f(x) = -2x+5$]

 How do we determine the value of delta, δ?
 Method 1: Set $f(x) = L+\varepsilon$ and set $f(x) = L-\varepsilon$ and solve for $x_1 = a-\delta$ and $x_2 = a+\delta$ and then determine δ
Method 2: What we want to know is: When is $|f(x) - L| < 1.5$?

$$|f(x) - 3| < 1.5$$
$$\Rightarrow |(-2x+5)-3| < 1.5$$
$$\Rightarrow |-2x+2| < 1.5$$
$$\Rightarrow -1.5 < -2x + 2 < 1.5$$
$$\Rightarrow -3.5 < -2x < -0.5$$
$$\Rightarrow 1.75 > x > 0.25 \Rightarrow 0.25 < x < 1.75 \Rightarrow x \in (0.25, 1.75)$$

$$\Rightarrow \delta = |0.25 - 1| = |1.75 - 1| = 0.75$$

III. The Precise Definition of a Limit

A. Defn: Let f be a fn defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write \(\lim_{x \to a} f(x) = L \) if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$

Another way of writing the last line of this definition is: if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

Note: We have replaced the imprecise descriptions (i.e. sufficiently close and arbitrarily close) in the informal definition of limits with the values epsilon and delta.

B. If the value of ε is specified

1. Graphical Approach

 a. Use the graph of $f(x) = x + 1$ to find a number δ such that if $0 < |x - 8| < \delta$ then $|\sqrt{x+1} - 3| < 1$, i.e., Use the graph of $f(x) = \sqrt{x+1}$, $L = 3$, and $\varepsilon = 1$ to determine δ.

Now we need to find a delta neighborhood about 2 that will fit inside the open interval $(3,15)$.

The largest delta that will work is the smaller of the 2 distances from $a = 8$. \(\therefore \) we choose $\delta < \underline{__________}$
2. Algebraic Approach
 a. Steps:
 1. Solve the inequality $|f(x)-L|<\varepsilon$ to find an open interval (a,b) about x_0 on which the inequality holds for all $x \neq x_0$ (i.e. $\forall x \neq x_0$)
 2. Find a value of $\delta>0$ that places the open interval $(x_0-\delta, x_0+\delta)$ centered at x_0 inside the interval (a,b). The inequality $|f(x)-L|<\varepsilon$ will hold $\forall x \neq x_0$ in this delta-interval about x_0.
 b. Example
 1. For the limit $\lim_{x \to 8} \sqrt{x+1} = 3$ illustrate the definition by finding the values of δ that correspond to $\varepsilon=1$.

2. The interior of a typical 1-L measuring cup is a right circular cylinder of radius 6cm. How closely must we measure the height, h, in order to measure out 1 L (1000 cm3) with an error of no more than 1% (i.e. 10 cm3)? (Use: $V=\pi r^2 h$)
C. If the value of ε is not specified

1. An example of a proof worked out

Prove that $\lim_{x \to 1} (3x + 5) = 8$

a. Preliminary analysis of the problem (guessing a value for δ)

Given $\varepsilon > 0$, find $\delta > 0$ s.t. $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$

$$0 < |x - 1| < \delta \Rightarrow |(3x + 5) - 8| < \varepsilon$$

$$\Rightarrow |3x - 3| < \varepsilon$$

$$\Rightarrow 3|x - 1| < \varepsilon$$

$$\Rightarrow |x - 1| < \frac{\varepsilon}{3}$$

This suggests that we choose $\delta = \frac{\varepsilon}{3}$

b. Proof (showing that this δ works)

Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{3}$. If $0 < |x - 1| < \delta$, then

$$|3x + 5) - 8| = |3x - 3| = 3|x - 1| < 3\delta = 3\left(\frac{\varepsilon}{3}\right) = \varepsilon$$

Thus $|3x + 5) - 8| < \varepsilon$ whenever $0 < |x - 1| < \delta$

\therefore, by the definition of a limit, $\lim_{x \to 1} (3x + 5) = 8$

2. Example

Prove that $\lim_{x \to 2} (4x - 1) = 7$
D. More Definitions

1. **Defa of Left-Hand Limit:** \(\lim_{x \to a^-} f(x) = L \) if for every number \(\varepsilon > 0 \) there is a corresponding number \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(a - \delta < x < a \)

2. **Defa of Right-Hand Limit:** \(\lim_{x \to a^+} f(x) = L \) if for every number \(\varepsilon > 0 \) there is a corresponding number \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(a < x < a + \delta \)

3. **Infinite Limits:**
 a. Let \(f \) be a fn defined on some open interval that contains the number \(a \), except possibly at \(a \) itself. Then \(\lim_{x \to a} f(x) \to \infty \) means that for every positive number \(M \) there is a corresponding positive number \(\delta \) such that \(f(x) > M \) whenever \(0 < |x - a| < \delta \)
 b. Let \(f \) be a fn defined on some open interval that contains the number \(a \), except possibly at \(a \) itself. Then \(\lim_{x \to a} f(x) \to -\infty \) means that for every negative number \(N \) there is a corresponding positive number \(\delta \) such that \(f(x) < N \) whenever \(0 < |x - a| < \delta \)

IV. Extra Examples

A. Use the graph of \(f(x) = x^2 \) to find a number \(\delta \) such that \(|x^2 - 4| < 0.5 \) whenever \(|x - 2| < \delta \)

Now we need to find a delta neighborhood about 2 that will fit inside the open interval \((3.5, 4.5)\).

The largest delta that will work is the smaller of the 2 distances from \(x_0 = 2 \). \(∴ \) we choose \(\delta < \) _____

\[
\begin{align*}
d_1 &= \underline{\quad} \\
d_2 &= \underline{\quad} \\
\{ &\delta < \underline{\quad} \\
\end{align*}
\]
B. Now resolve the above problem using an inequality. For the limit \(\lim_{x \to 2} x^2 = 4 \) illustrate the definition by finding the values of \(\delta \) that correspond to \(\varepsilon = 0.5 \).

C. Use the graph of \(f(x) = 4x + 2 \), \(L = -6 \) and \(\varepsilon = 1 \) to determine \(\delta \).

D. Now resolve the above problem using an inequality. For the limit \(\lim_{x \to -2} (4x + 2) = -6 \) illustrate the definition by finding the values of \(\delta \) that correspond to \(\varepsilon = 1 \).