Math 1205 Calculus/Sec. 4.3 Monotonic Functions and the First Derivative Test

I. Increasing/Decreasing Functions
 A. Definition: Let f be a function defined on an interval I and let x_1 and x_2 be any two points in I.
 1. f increases on I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
 2. f decreases on I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.

 A function that is increasing or decreasing on I is called monotonic on I.

 B. The First Derivative Test for Increasing/Decreasing.
 Suppose that f is continuous on $[a, b]$ and differentiable on the open interval (a, b).
 If $f'(x) > 0$ for all x in (a, b), then f increases on $[a, b]$.
 If $f'(x) < 0$ for all x in (a, b), then f decreases on $[a, b]$.

II. Local Extrema (Relative Extrema)
 A. Definitions
 1. A function f has a local maximum value at an interior point c of its domain if $f(x) \leq f(c)$ for all x in some open interval containing c.
 2. A function f has a local minimum value at an interior point c of its domain if $f(x) \geq f(c)$ for all x in some open interval containing c.
 3. An interior point of the domain of a function f where f' is zero or undefined is a critical point of f. (A stationary point exists where $f'(x) = 0$ and a singular point exists where $f'(x)$ is undefined.)

 B. The First Derivative Test for Local Extrema
 Suppose that c is a critical point of a continuous function f and that f is differentiable at every point in some interval containing c except possibly at c itself.
 1. If $f'(x) > 0$ on (a, c) and $f'(x) < 0$ on (c, b) then f has a local maximum of $f(c)$ at $x=c$.
 2. If $f'(x) < 0$ on (a, c) and $f'(x) > 0$ on (c, b) then f has a local minimum of $f(c)$ at $x=c$.
 3. If f' does not change signs at $x=c$, then f has no local extrema at $x=c$.
C. Steps in using the First Derivative Test for Local Extrema

1. Find \(f'(x) \)

2. Find the critical values. (Determine where \(f'(x) = 0 \) and/or \(f'(x) \) is undefined).

3. Determine the interval(s) where \(f \) is increasing (\(f'(x) > 0 \)) and interval(s) where \(f \) is decreasing (\(f'(x) < 0 \)).

4. a. If \(f \) is continuous, then \(f(c) \) is a relative maximum if \(f \) is increasing on \((a,c)\) followed by \(f \) decreasing on \((c,b)\).

 b. If \(f \) is continuous, then \(f(c) \) is a relative minimum if \(f \) is decreasing on \((a,c)\) followed by \(f \) increasing on \((c,b)\).

III. Examples

For the following functions, determine (a) where the function is increasing/decreasing and (b) the local extrema.

A. \(f(x) = x^2 \)

B. \(y = (2x - 1)^3 \)
C. \[g(t) = \frac{1}{4}t^4 + \frac{1}{2}t^3 - 5t^2 \]

D. \[h(x) = x - 2\sqrt{x} \quad \text{Note: domain is} [0, \infty) \]

E. \[f(x) = xe^x \]