Eigenfunctions of Composition and Weighted Composition Operator on \(\alpha\)-Bloch Spaces

Bhupendra Paudyal
University of Toledo

SEAM 2013
March 15-16
\(\mathbb{D} \) is the unit disk of \(\mathbb{C} \).

\(H(\mathbb{D}) \) is the set of all holomorphic functions on \(\mathbb{D} \).

\(\varphi \) is a holomorphic self map of \(\mathbb{D} \).

The composition operator with symbol \(\varphi \) is defined as

\[
C_\varphi(f)(z) = (f \circ \varphi)(z)
\]

Schröder's functional equation

\[
C_\varphi(f)(z) = (f \circ \varphi)(z) = \lambda f(z) \quad (1)
\]

where \(\lambda \neq 0 \) is complex constant.

A natural question is "What are \(\lambda \) and \(f \) that satisfy (1)?"
\(\mathbb{D} \) is the unit disk of \(\mathbb{C} \).

\(H(\mathbb{D}) \) is the set of all holomorphic functions on \(\mathbb{D} \).

The composition operator with symbol \(\phi \) is defined as
\[
C_{\phi}(f)(z) = (f \circ \phi)(z)
\]

Schröder's functional equation
\[
C_{\phi}(f)(z) = (f \circ \phi)(z) = \lambda f(z) \tag{1}
\]

where \(\lambda \neq 0 \) is a complex constant.

A natural question is "What are \(\lambda \) and \(f \) that satisfy (1)"?
\mathbb{D} is the unit disk of \mathbb{C}.

$H(\mathbb{D})$ is the set of all holomorphic functions on \mathbb{D}.

ϕ is a holomorphic self map of \mathbb{D}.

The composition operator with symbol ϕ is defined as $C_\phi(f)(z) = (f \circ \phi)(z)$.

Schröder's functional equation

$$C_\phi(f)(z) = (f \circ \phi)(z) = \lambda f(z) \quad (1)$$

where $\lambda \neq 0$ is complex constant.

A natural question is "What are λ and f that satisfy (1)?"
D is the unit disk of \mathbb{C}.
$H(D)$ is the set of all holomorphic functions on D.
ϕ is a holomorphic self map of D.
The **composition operator** with symbol ϕ is defined as

$$C_\phi(f)(z) = (f \circ \phi)(z)$$
\(\mathbb{D} \) is the unit disk of \(\mathbb{C} \).
\(H(\mathbb{D}) \) is the set of all holomorphic functions on \(\mathbb{D} \).
\(\phi \) is a holomorphic self map of \(\mathbb{D} \).
The **composition operator** with symbol \(\phi \) is defined as

\[
C_\phi(f)(z) = (f \circ \phi)(z)
\]

Schröder’s functional equation

\[
\text{where } \lambda \neq 0 \text{ is complex constant.}
\]

A natural question is “What are \(\lambda \) and \(f \) that satisfy (1)?”
\(\mathbb{D} \) is the unit disk of \(\mathbb{C} \).

\(H(\mathbb{D}) \) is the set of all holomorphic functions on \(\mathbb{D} \).

\(\phi \) is a holomorphic self map of \(\mathbb{D} \).

The **composition operator** with symbol \(\phi \) is defined as

\[
C_\phi(f)(z) = (f \circ \phi)(z)
\]

Schröder’s functional equation

\[
C_\phi(f)(z) = (f \circ \phi)(z) = \lambda f(z)
\]

where \(\lambda \neq 0 \) is complex constant.
\(\mathbb{D} \) is the unit disk of \(\mathbb{C} \).
\(H(\mathbb{D}) \) is the set of all holomorphic functions on \(\mathbb{D} \).
\(\phi \) is a holomorphic self map of \(\mathbb{D} \).
The **composition operator** with symbol \(\phi \) is defined as

\[
C_\phi(f)(z) = (f \circ \phi)(z)
\]

Schröder’s functional equation

\[
C_\phi(f)(z) = (f \circ \phi)(z) = \lambda f(z)
\] \((1) \)

where \(\lambda \neq 0 \) is complex constant.
A natural question is “What are \(\lambda \) and \(f \) that satisfy (1)?”
If ϕ is a holomorphic self map of \mathbb{D} such that $\phi(0) = 0$, and $0 < |\phi'(0)| < 1$, then
Königs’s Theorem (1884)

If $φ$ is a holomorphic self map of \mathbb{D} such that $φ(0) = 0$, and $0 < |φ'(0)| < 1$, then

1. The sequence of holomorphic functions

$$σ_k(z) := \frac{φ_k(z)}{φ'(0)^k}, \quad \text{where } φ_k = φ \circ φ \circ ... \circ φ$$

converges uniformly on compact subsets of \mathbb{D} to a non-constant holomorphic function $σ$ and $σ$ satisfies (1) with $λ = φ'(0)$.

2. If f is a non-constant holomorphic function that satisfies (1), then there exists a positive integer n such that $λ = φ'(0)^n$ and f is a constant multiple of $σ^n$.

Note: $σ$ is known as König's function.
Königs’s Theorem (1884)

If ϕ is a holomorphic self map of \mathbb{D} such that $\phi(0) = 0$, and $0 < |\phi'(0)| < 1$, then

i) The sequence of holomorphic functions

$$\sigma_k(z) := \frac{\phi_k(z)}{\phi'(0)^k}, \text{ where } \phi_k = \phi \circ \phi \circ ... \circ \phi$$

converges uniformly on compact subsets of \mathbb{D} to a non-constant holomorphic function σ and σ satisfies (1) with $\lambda = \phi'(0)$.

ii) If f is a non-constant holomorphic function that satisfies (1), then there exists a positive integer n such that $\lambda = \phi'(0)^n$ and f is a constant multiple of σ^n.
Königs’s Theorem (1884)

If \(\phi \) is a holomorphic self map of \(\mathbb{D} \) such that \(\phi(0) = 0 \), and \(0 < |\phi'(0)| < 1 \), then

1. The sequence of holomorphic functions
 \[
 \sigma_k(z) := \frac{\phi_k(z)}{\phi'(0)^k}, \quad \text{where} \quad \phi_k = \phi \circ \phi \circ ... \circ \phi
 \]
 converges uniformly on compact subsets of \(\mathbb{D} \) to a non-constant holomorphic function \(\sigma \) and \(\sigma \) satisfies (1) with \(\lambda = \phi'(0) \).

2. If \(f \) is a non-constant holomorphic function that satisfies (1), then there exists a positive integer \(n \) such that \(\lambda = \phi'(0)^n \) and \(f \) is a constant multiple of \(\sigma^n \).

Note: \(\sigma \) is known as Königs function
Assume $\phi(0) = 0$, $0 < |\phi'(0)| < 1$ and σ is Königs function.
Assume $\phi(0) = 0$, $0 < |\phi'(0)| < 1$ and σ is Königs function. Let C_ϕ be bounded on α-Bloch space B_{α}, $\alpha \in \mathbb{R}_+$.
Assume $\phi(0) = 0$, $0 < |\phi'(0)| < 1$ and σ is Königs function. Let C_ϕ be bounded on α-Bloch space B_α, $\alpha \in \mathbb{R}_+$. What are the conditions on ϕ that ensure all these eigenfunctions $\sigma^n \in B_\alpha$. Similar Problem for weighted composition operators.
Assume $\phi(0) = 0$, $0 < |\phi'(0)| < 1$ and σ is Königs function. Let C_ϕ be bounded on α-Bloch space B_α, $\alpha \in \mathbb{R}_+$. What are the conditions on ϕ that ensure all these eigenfunctions $\sigma^n \in B_\alpha$.

Similar Problem for weighted composition operators.
For \(\alpha \in \mathbb{R}_+ \), \(\alpha \)-Bloch is defined as
\[
\mathcal{B}_\alpha = \{ f \in H(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty \}
\]
For $\alpha \in \mathbb{R}_+$, α-Bloch is defined as
$$\mathcal{B}_\alpha = \{ f \in H(D) : \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| < \infty \}$$

$$\|f\|_{\mathcal{B}_\alpha} = |f(0)| + \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)|$$
For $\alpha \in \mathbb{R}_+$, α-Bloch is defined as

$$B_\alpha = \left\{ f \in H(D) : \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| < \infty \right\}$$

$$\|f\|_{B_\alpha} = |f(0)| + \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)|$$

Some well known facts:
For $\alpha \in \mathbb{R}_+$, α-Bloch is defined as

$$\mathcal{B}_\alpha = \{ f \in H(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty \}$$

$$\| f \|_{\mathcal{B}_\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)|$$

Some well known facts:

- $\mathcal{B}_\alpha \subset \mathcal{B}_\beta$, for $\alpha \leq \beta$
For $\alpha \in \mathbb{R}_+$, α-Bloch is defined as
\[
\mathcal{B}_\alpha = \{ f \in H(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty \}
\]
\[
\| f \|_{\mathcal{B}_\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)|
\]

Some well known facts:
- $\mathcal{B}_\alpha \subset \mathcal{B}_\beta$, for $\alpha \leq \beta$
- $\mathcal{B}_\alpha \subset H^\infty$, for $0 < \alpha < 1$
For $\alpha \in \mathbb{R}^+$, α-Bloch is defined as

$$B_\alpha = \{ f \in H(D) : \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| < \infty \}$$

$$\| f \|_{B_\alpha} = |f(0)| + \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)|$$

Some well known facts:

- $B_\alpha \subset B_\beta$, for $\alpha \leq \beta$
- $B_\alpha \subset H^\infty$, for $0 < \alpha < 1$
- $|f(z)| \leq c_f \log \frac{2}{1-|z|}$, $\forall f \in B_1 = B$ (say) and c_f constant
For $\alpha \in \mathbb{R}_+$, α-Bloch is defined as
\[\mathcal{B}_\alpha = \{ f \in H(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty \} \]
\[\| f \|_{\mathcal{B}_\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| \]

Some well known facts:
- $\mathcal{B}_\alpha \subset \mathcal{B}_\beta$, for $\alpha \leq \beta$
- $\mathcal{B}_\alpha \subset \mathbb{H}^\infty$, for $0 < \alpha < 1$
- $|f(z)| \leq c_f \log \frac{2}{1-|z|}$, $\forall f \in \mathcal{B}_1 = \mathcal{B}$ (say) and c_f constant
- $\| f \|_{\mathcal{B}_\alpha} \approx \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha-1} |f(z)|$ for $\alpha > 1$
Known result:
if C_ϕ is compact operator on B_α for $\alpha > 0$ then then $\sigma^n \in B_\alpha$ for all n.
Definition

Hyperbolic α-derivative of ϕ is defined by

$$
\phi^{(h_{\alpha})}(z) = \frac{(1 - |z|^2)^{\alpha} \phi'(z)}{(1 - |\phi(z)|^2)^{\alpha}}.
$$
Definition

Hyperbolic α-derivative of ϕ is defined by
\[
\phi^{(h_\alpha)}(z) = \frac{(1 - |z|^2)^\alpha \phi'(z)}{(1 - |\phi(z)|^2)^\alpha}.
\]

Definition

Let us say ϕ satisfies condition (A) if there exits a non negative integer m such that
\[
|\phi^{(h_\alpha)}(\phi_m(z))| = \frac{(1 - |\phi_m(z)|^2)^\alpha \phi'(\phi_m(z))}{(1 - |\phi_{m+1}(z)|^2)^\alpha} \leq |\phi'(0)|, \quad \text{for all } z \in \mathbb{D}
\]
Definition

Hyperbolic α-derivative of ϕ is defined by

$$
\phi^{(h_\alpha)}(z) = \frac{(1 - |z|^2)^\alpha \phi'(z)}{(1 - |\phi(z)|^2)^\alpha}.
$$

Definition

Let us say ϕ satisfies condition (A) if there exists a non negative integer m such that

$$
|\phi^{(h_\alpha)}(\phi_m(z))| = \frac{(1 - |\phi_m(z)|^2)^\alpha \phi'(\phi_m(z))}{(1 - |\phi_{m+1}(z)|^2)^\alpha} \leq |\phi'(0)|, \quad \text{for all } z \in \mathbb{D}
$$

(A)

Remark

If $m = 0$, $|\phi^{(h_\alpha)}(z)| \leq |\phi'(0)|$, for all $z \in \mathbb{D}$
For \(\mathcal{B}_\alpha, \ 0 < \alpha < 1 \)

Theorem 1

Let \(0 < \alpha < 1 \), and \(C_\phi \) is bounded on \(\mathcal{B}_\alpha \).

- If there exists \(k \in \mathbb{N} \) such that \(\| \phi_k \|_\infty < 1 \) then \(\sigma^n \in \mathcal{B}_\alpha \) for all \(n \in \mathbb{N} \).

- If \(\phi \) satisfies condition (A) then \(\sigma^n \in \mathcal{B}_\alpha \) for all \(n \in \mathbb{N} \).
For \mathcal{B}_α, $0 < \alpha < 1$

Theorem 1

Let $0 < \alpha < 1$, and C_ϕ is bounded on \mathcal{B}_α.

- if there exists $k \in \mathbb{N}$ such that $\|\phi_k\|_\infty < 1$ then $\sigma^n \in \mathcal{B}_\alpha$ for all $n \in \mathbb{N}$.
- If ϕ satisfies condition (A) then $\sigma^n \in \mathcal{B}_\alpha$ for all $n \in \mathbb{N}$.

Example

$$\phi(z) = \frac{iz(z + 1)}{2}$$

Here, $\phi(0) = 0$, $\phi'(0) = \frac{i}{2}$ and $\|\phi_2\|_\infty < 1$.
Consider a map \(\gamma(z) = \frac{1 + z}{1 - z} \) that maps unit disk to left half plane univalently.
Example

Consider a map $\gamma(z) = \frac{1 + z}{1 - z}$ that maps unit disk to left half plane univalently and suppose $\phi_t(z) = \frac{\gamma(z)^t - 1}{\gamma(z)^t + 1}$ where $t \in (0, 1)$ that maps unit disk to unit disk.
Consider a map $\gamma(z) = \frac{1 + z}{1 - z}$ that maps unit disk to left half plane univalently and suppose $\phi_t(z) = \frac{\gamma(z)^t - 1}{\gamma(z)^t + 1}$ where $t \in (0, 1)$ that maps unit disk to unit disk. Here, $\phi_t(0) = 0$, $\phi'_t(0) = t$.
Example

Consider a map \(\gamma(z) = \frac{1 + z}{1 - z} \) that maps unit disk to left half plane univalently and suppose \(\phi_t(z) = \frac{\gamma(z)^t - 1}{\gamma(z)^t + 1} \) where \(t \in (0, 1) \) that maps unit disk to unit disk. Here, \(\phi_t(0) = 0, \phi'_t(0) = t \)

\[
|\phi_t^{(h)}(z)| = \frac{(1 - |z|^2) |\phi_t'(z)|}{(1 - |\phi_t(z)|^2)} \leq |\phi_t'(0)|
\]
Consider a map \(\gamma(z) = \frac{1 + z}{1 - z} \) that maps unit disk to left half plane univalently and suppose \(\phi_t(z) = \frac{\gamma(z)^t - 1}{\gamma(z)^t + 1} \) where \(t \in (0, 1) \) that maps unit disk to unit disk. Here, \(\phi_t(0) = 0 \), \(\phi_t'(0) = t \)

\[
|\phi_t^{(h)}(z)| = \frac{(1 - |z|^2) |\phi_t'(z)|}{(1 - |\phi_t(z)|^2)} \leq |\phi_t'(0)|
\]

Therefore \(\phi_t \) satisfies condition (A) for \(\alpha = 1 \) and \(m = 0 \).
Consider a map $\gamma(z) = \frac{1 + z}{1 - z}$ that maps unit disk to left half plane univalently and suppose $\phi_t(z) = \frac{\gamma(z)^t - 1}{\gamma(z)^t + 1}$ where $t \in (0, 1)$ that maps unit disk to unit disk. Here, $\phi_t(0) = 0$, $\phi'_t(0) = t$

$$|\phi_t^{(h)}(z)| = \frac{(1 - |z|^2)|\phi'_t(z)|}{(1 - |\phi_t(z)|^2)} \leq |\phi'_t(0)|$$

Therefore ϕ_t satisfies condition (A) for $\alpha = 1$ and $m = 0$.

Note that Kőnigs’ function of C_{ϕ_t} is $\sigma(z) = \log \frac{1 + z}{1 - z} \in \mathcal{B}$
For B_α, $\alpha > 1$

Theorem 2

If ϕ satisfies condition (A) for $\alpha = 1$ then $\sigma \in B$.

Definition 1

Bloch number of a function σ is $b = \inf \alpha \{ \alpha : \sigma \in B_\alpha \}$.

Theorem 3

Let $\alpha > 1$. $\sigma^*_n \in B_\alpha$ for all $n \in \mathbb{N}$ if only if Bloch number b of σ is at most 1.

Corollary 1

If ϕ satisfies condition (A) for $\alpha = 1$ then $\sigma^*_n \in B_\beta$ for all $\beta > 1$ and for all $n \in \mathbb{N}$.

Bhupendra Paudyal University of Toledo

For B_α, $\alpha > 1$

Theorem 2

If ϕ satisfies condition (A) for $\alpha = 1$ then $\sigma \in B$.

Definition 1

Bloch number of a function σ is $b = \inf \{\alpha : \sigma \in B_\alpha\}$.
For B_α, $\alpha > 1$

Theorem 2

If ϕ satisfies condition (A) for $\alpha = 1$ then $\sigma \in B$.

Definition 1

Bloch number of a function σ is $b = \inf_\alpha \{\alpha : \sigma \in B_\alpha\}$.

Theorem 3

Let $\alpha > 1$. $\sigma^n \in B_\alpha$ for all $n \in \mathbb{N}$ if only if Bloch number b of σ is at most 1.
For \mathcal{B}_α, $\alpha > 1$

Theorem 2
If ϕ satisfies condition (A) for $\alpha = 1$ then $\sigma \in \mathcal{B}$.

Definition 1
Bloch number of a function σ is $b = \inf_{\alpha} \{\alpha : \sigma \in \mathcal{B}_\alpha\}$.

Theorem 3
Let $\alpha > 1$. $\sigma^n \in \mathcal{B}_\alpha$ for all $n \in \mathbb{N}$ if only if Bloch number b of σ is at most 1.

Corollary 1
If ϕ satisfies condition (A) for $\alpha = 1$ then $\sigma^n \in \mathcal{B}_\beta$ for all $\beta > 1$ and for all $n \in \mathbb{N}$.
For \mathcal{B}

Theorem 4

Assume

\[
\frac{(1 - |z|^2) |\phi'(z)|}{(1 - |\phi(z)|^2)} \frac{\log \frac{2}{1 - |z|}}{\log \frac{2}{1 - |\phi(z)|}} \leq |\phi'(0)|
\]

then \(\{\sigma^n\}_{n=0}^{\infty} \subset \mathcal{B} \)
Weighted composition operator

Definition

Let u a holomorphic function in \mathbb{D}, then the operator defined by the relation

$$(uC_\phi)(f)(z) = u(z)f(\phi(z))$$

for $f \in H(\mathbb{D})$ is called weighted composition operator.
Weighted composition operator

Definition

Let u a holomorphic function in \mathbb{D}, then the operator defined by the relation

$$(uC_\phi)(f)(z) = u(z)f(\phi(z))$$

for $f \in H(\mathbb{D})$ is called weighted composition operator.

Schröder Equation

The Schröder equation for wt. composition operator is

$$u(z)f(\phi(z)) = \lambda f(z)$$

Where f is holomorphic function and $\lambda \neq 0$.
Theorem 5

(T. Hosokawa and Q. D. Nguyen, 2010)

If \(u(0) \neq 0, \ \phi(0) = 0, \ 0 < |\phi'(0)| < 1 \), then

- **The Sequence of holomorphic function**

\[
v_k(z) = \frac{u(z)u(\phi(z))\ldots u(\phi_{k-1}(z))}{u(0)^k}
\]

converges uniformly on compact subset of \(\mathbb{D} \) to a holomorphic function \(v \) and \(v \) satisfies (3) with \(\lambda = u(0) \).
Theorem 5

(T. Hosokawa and Q. D. Nguyen, 2010)

If \(u(0) \neq 0, \quad \phi(0) = 0, \quad 0 < |\phi'(0)| < 1 \), then

- The Sequence of holomorphic function

\[
v_k(z) = \frac{u(z)u(\phi(z)) \cdots u(\phi_{k-1}(z))}{u(0)^k}
\]

converges uniformly on compact subset of \(\mathbb{D} \) to a holomorphic function \(v \) and \(v \) satisfies (3) with \(\lambda = u(0) \).

- If \(f \) is a holomorphic function that satisfies (3), then there exists a positive integer \(n \) such that

\[
\lambda = u(0)\phi'(0)^n
\]

and \(f \) is a constant multiple of \(v\sigma^n \), where \(\sigma \) is Königs function.
Theorem 6

(T. Hosokawa and Q. D. Nguyen, 2010)

Assume that \(u \in C \phi \) is bounded on \(B \). For \(0 < r < 1 \), set

\[
a_r := \sup_{|z| = r} \left\{ |u'(z) \phi(z)| + |u(z) \phi'(z)| \right\}.
\]

Further assume that

\[i \lim_{r \to 1} \log(1 - r) \log M_r(\phi) = \infty. \]

\[ii \log |a_r| < \epsilon \log(1 - r) \log M_r(\phi), \text{ where } \epsilon > 0 \text{ is a constant satisfying } \epsilon \log \| \phi \|_\infty > -1. \]

Then, \(v \sigma^n \in B \) for all \(n \in \mathbb{N} \).

Remark

It can be shown that these conditions are strong enough to imply \(u \in C \phi \) is compact on \(B \).
Theorem 7

Assume $0 < \alpha < 1$ and $u \in C_\phi$ bounded on B_α. If $\|u'\|_\infty < \infty$ and there exists $K \in \mathbb{N}$ such that $\|\phi_k\|_\infty < 1$ then $v \sigma^n \in B_\alpha$ for all n.
Theorem 7
Assume $0 < \alpha < 1$ and $u \in C^{\phi}$ bounded on B_{α}. If $\|u'\|_{\infty} < \infty$ and there exists $K \in \mathbb{N}$ such that $\|\phi_k\|_{\infty} < 1$ then $v\sigma^n \in B_{\alpha}$ for all n.

Theorem 8
$(H.,N.)$ If $\|u\|_{\infty} < \infty$ and $\|\phi_k\|_{\infty} < 1$ for some $k \in \mathbb{N}$ then $v\sigma^n \in B$ for all n.
Theorem 9

For $\alpha > 1$, suppose $|u(z)| \leq \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \leq |u(0)|$
Theorem 9

For $\alpha > 1$, suppose $|u(z)| \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \leq |u(0)|$

1. If $\|\phi_k\|_{\infty} < 1$ for some $k \in \mathbb{N}$ then $v\sigma^n \in B_\alpha$.

Bhupendra Paudyal University of Toledo
Theorem 9

For $\alpha > 1$, suppose $|u(z)| \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \leq |u(0)|$

i. If $\|\phi_k\|_{\infty} < 1$ for some $k \in \mathbb{N}$ then $v \sigma^n \in \mathcal{B}_\alpha$.

ii. If $|\phi^{(h)}(z)| \leq |\phi'(0)|$ then $v \sigma^n \in \mathcal{B}_p$, for any $p > \alpha$.
Theorem 9

For $\alpha > 1$, suppose $|u(z)| \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \leq |u(0)|$

i. If $\|\phi_k\|_\infty < 1$ for some $k \in \mathbb{N}$ then $v \sigma^n \in B_\alpha$.

ii. If $|\phi^{(h)}(z)| \leq |\phi'(0)|$ then $v \sigma^n \in B_p$, for any $p > \alpha$.

Theorem 10

For $\alpha > 1$, suppose

i. $|u(z)| \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \frac{\log \frac{2}{1-|z|}}{\log \frac{2}{1-|\phi(z)|}} \leq |u(0)|$
Theorem 9

For $\alpha > 1$, suppose $|u(z)| \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \leq |u(0)|$

1. If $\|\phi_k\|_{\infty} < 1$ for some $k \in \mathbb{N}$ then $v\sigma^n \in B_\alpha$.
2. If $|\phi^{(h)}(z)| \leq |\phi'(0)|$ then $v\sigma^n \in B_p$, for any $p > \alpha$.

Theorem 10

For $\alpha > 1$, suppose

1. $|u(z)| \frac{(1-|z|^2)^{\alpha-1}}{(1-|\phi(z)|^2)^{\alpha-1}} \frac{\log \frac{2}{1-|z|}}{\log \frac{2}{1-|\phi(z)|}} \leq |u(0)|$

2. $|\phi^{(h)}(z)| \frac{\log \frac{2}{1-|z|}}{\log \frac{2}{1-|\phi(z)|}} \leq |\phi'(0)|$

then $v\sigma^n \in B_\alpha$ for all n.
THANK YOU