Compactness of operators on generalized Fock spaces

Joshua Isralowitz

SUNY Albany

jisralowitz@albany.edu

March 15, 2013
Outline of this talk

- Section 1: Introduction
Outline of this talk

- Section 1: Introduction
- Section 2: Main results
Outline of this talk

- Section 1: Introduction
- Section 2: Main results
- Section 3: Open problems
Generalized Fock spaces

For \(z, w \in \mathbb{C}^n \), let \(z \cdot \overline{w} \) be the usual anti-linear dot product

\[
z \cdot \overline{w} := z_1 \overline{w_1} + \cdots + z_n \overline{w_n}
\]

and let \(|z|^2 = z \cdot \overline{z} \).
For \(z, w \in \mathbb{C}^n \), let \(z \cdot \overline{w} \) be the usual anti-linear dot product

\[
z \cdot \overline{w} := z_1 \overline{w_1} + \cdots + z_n \overline{w_n}
\]

and let \(|z|^2 = z \cdot \overline{z} \).

Let \(\phi \in C^2(\mathbb{C}^n) \) satisfy \(0 < m < \Delta \phi < M \).
Generalized Fock spaces

- For $z, w \in \mathbb{C}^n$, let $z \cdot \overline{w}$ be the usual anti-linear dot product
 \[z \cdot \overline{w} := z_1 \overline{w_1} + \cdots + z_n \overline{w_n} \]
 and let $|z|^2 = z \cdot \overline{z}$.
- Let $\phi \in C^2(\mathbb{C}^n)$ satisfy $0 < m < \Delta \phi < M$.
- If $0 < p < \infty$ then let $L^p_\phi := \{ f : f(\cdot) e^{-\phi(\cdot)} \in L^p(\mathbb{C}^n, dv) \}$.
For $z, w \in \mathbb{C}^n$, let $z \cdot \overline{w}$ be the usual anti-linear dot product

$$z \cdot \overline{w} := z_1 \overline{w_1} + \cdots + z_n \overline{w_n}$$

and let $|z|^2 = z \cdot \overline{z}$.

Let $\phi \in C^2(\mathbb{C}^n)$ satisfy $0 < m < \Delta \phi < M$.

If $0 < p < \infty$ then let $L^p_\phi := \{ f : f(\cdot)e^{-\phi(\cdot)} \in L^p(\mathbb{C}^n, dv) \}$.

Let $F^p_\phi := \{ f \text{ entire on } \mathbb{C}^n : f \in L^p_\phi \}$.
Generalized Fock spaces

- Example: if $\phi(z) = \frac{|z|^2}{8t}$ for $t > 0$, then $\Delta(|z|^2/8t) = n/2t$ and $F^p_t := F^p_\phi$ is the classical Fock space.
Generalized Fock spaces

- Example: if \(\phi(z) = \frac{|z|^2}{8t} \) for \(t > 0 \), then \(\Delta \left(\frac{|z|^2}{8t} \right) = \frac{n}{2t} \) and \(F_t^p := F_\phi^p \) is the classical Fock space.

- Nontrivial example (Fock-Sobolev spaces):
Example: if $\phi(z) = \frac{|z|^2}{8t}$ for $t > 0$, then $\Delta(|z|^2/8t) = n/2t$ and $F^p_t := F^p_\phi$ is the classical Fock space.

Nontrivial example (Fock-Sobolev spaces): If $m \in \mathbb{N}$ then let $F^{p}_{t,m}$ be the Banach space of entire functions where

$$\sum_{|\alpha| \leq m} \left\| (\partial^\alpha f)(\cdot) e^{-\frac{|\cdot|}{8t}} \right\|_{L^p(\mathbb{C}^n, dv)}$$
Generalized Fock spaces

- Example: if $\phi(z) = \frac{|z|^2}{8t}$ for $t > 0$, then $\Delta(|z|^2/8t) = n/2t$ and $F^p_t := F^p_\phi$ is the classical Fock space.

- Nontrivial example (Fock-Sobolev spaces): If $m \in \mathbb{N}$ then let $F^p_{t,m}$ be the Banach space of entire functions where

$$
\sum_{|\alpha| \leq m} \left\| (\partial^\alpha f)(\cdot) e^{-\frac{|\cdot|^2}{8t}} \right\|_{L^p(\mathbb{C}^n, dv)}
$$

then $F^p_{t,m}$ can be written as a generalized Fock space (J.I., preprint).
Note: generalized Fock spaces appear naturally when studying sampling/interpolation and the $\bar{\partial}$ equation.
Generalized Fock spaces

- Note: generalized Fock spaces appear naturally when studying sampling/interpolation and the $\overline{\partial}$ equation.
- Note: F^2_ϕ is a reproducing kernel Hilbert space under the canonical Hilbert space inner product

$$\langle f, g \rangle_{F^2_\phi} = \int_{\mathbb{C}^n} f(z) \overline{g(z)} e^{-2\phi(z)} \, dv(z).$$
Generalized Fock spaces

- Note: generalized Fock spaces appear naturally when studying sampling/interpolation and the $\overline{\partial}$ equation.
- Note: F^2_ϕ is a reproducing kernel Hilbert space under the canonical Hilbert space inner product

$$\langle f, g \rangle_{F^2_\phi} = \int_{\mathbb{C}^n} f(z) g(z) e^{-2\phi(z)} \, dv(z).$$

- Let $K(z, w)$ be the reproducing kernel of F^2_ϕ and let $k_w(z) := K(z, w)/\sqrt{K(w, w)}$ be the normalized reproducing kernel of F^2_ϕ.
Toeplitz operators

The orthogonal projection $P : L^2_{\phi} \to F^2_{\phi}$ is given by

$$Pf(z) = \int_{\mathbb{C}^n} K(z, w)f(w)e^{-2\phi(w)} dv(w).$$
The orthogonal projection $P : L^2_\phi \to F^2_\phi$ is given by

$$Pf(z) = \int_{\mathbb{C}^n} K(z, w)f(w)e^{-2\phi(w)} \, dv(w).$$

Given a “nice” function f on \mathbb{C}^n, the Toeplitz operator T_f is defined by $T_f = PM_f$.
The orthogonal projection $P : L^2_\phi \rightarrow F^2_\phi$ is given by

$$Pf(z) = \int_{\mathbb{C}^n} K(z, w)f(w)e^{-2\phi(w)} dv(w).$$

Given a “nice” function f on \mathbb{C}^n, the Toeplitz operator T_f is defined by $T_f = PM_f$.

Note: one can naturally define Toeplitz operators T_μ with “nice” measure symbols μ on \mathbb{C}^n:
The orthogonal projection $P : L^2_\phi \to F^2_\phi$ is given by

$$Pf(z) = \int_{\mathbb{C}^n} K(z, w)f(w)e^{-2\phi(w)} \, dv(w).$$

Given a “nice” function f on \mathbb{C}^n, the Toeplitz operator T_f is defined by $T_f = PM_f$.

Note: one can naturally define Toeplitz operators T_μ with “nice” measure symbols μ on \mathbb{C}^n:

$$T_\mu f(z) = \int_{\mathbb{C}^n} K(z, w)f(w)e^{-2\phi(w)} \, d\mu(w).$$
Berezin transform

- Note: $\sup_{w \in \mathbb{C}^n} \| k_w \|_{F^p_\phi} < \infty$ for any $0 < p < \infty$
 (Schuster/Varolin, ’12).
Berezin transform

- Note: \(\sup_{w \in \mathbb{C}^n} \| k_w \|_{F^p_\phi} < \infty \) for any \(0 < p < \infty \) (Schuster/Varolin, '12).
- Note: \((F^p_\phi)^* = F^q_\phi\) under the natural pairing induced by \(\langle \cdot, \cdot \rangle_{F^2_\phi} \) if \(1 < p < \infty \) (Schuster/Varolin, '12).
Berezin transform

- Note: $\sup_{w \in \mathbb{C}^n} \| k_w \|_{F_p^\phi} < \infty$ for any $0 < p < \infty$ (Schuster/Varolin, ’12).
- Note: $(F_p^\phi)^* = F_q^\phi$ under the natural pairing induced by $\langle \cdot, \cdot \rangle_{F_2^\phi}$ if $1 < p < \infty$ (Schuster/Varolin, ’12).
- Note: $\lim_{|w| \to \infty} k_w = 0$ weakly as $|w| \to \infty$ (Schuster/Varolin, ’12).
Berezin transform

- Note: $\sup_{w \in \mathbb{C}^n} \| k_w \|_{F^p_\phi} < \infty$ for any $0 < p < \infty$ (Schuster/Varolin, ’12).
- Note: $(F^p_\phi)^* = F^q_\phi$ under the natural pairing induced by $\langle \cdot, \cdot \rangle_{F^2_\phi}$ if $1 < p < \infty$ (Schuster/Varolin, ’12).
- Note: $\lim_{|w| \to \infty} k_w = 0$ weakly as $|w| \to \infty$ (Schuster/Varolin, ’12).
- Berezin transform: if A is bounded on F^p_ϕ for $1 < p < \infty$ then let $B(A)(w) := \langle Ak_w, k_w \rangle_{F^2_\phi}$.
Note: if $1 < p < \infty$ and A is compact on F_ϕ^p then:
Berezin transform and compactness

Note: if $1 < p < \infty$ and A is compact on F_p^ϕ then:

$$\limsup_{|w|\to\infty} |(B(A))(w)|$$

$$\leq \limsup_{|w|\to\infty} \|A_kw\|_{F_p^\phi} \|k\|_{F_q^\phi} = 0.$$
Berezin transform and compactness

Note: if $1 < p < \infty$ and A is compact on \mathcal{F}^p_ϕ then:

$$\limsup_{|w| \to \infty} |(B(A))(w)| = \limsup_{|w| \to \infty} |\langle A k_w, k_w \rangle_{\mathcal{F}^2_\phi}|$$

Joshua Isralowitz
Note: if \(1 < p < \infty \) and \(A \) is compact on \(F^p_\phi \) then:

\[
\limsup_{|w| \to \infty} |(B(A))(w)| = \limsup_{|w| \to \infty} |\langle Ak_w, k_w \rangle_{F^2_\phi}| \leq \limsup_{|w| \to \infty} \|Ak_w\|_{F^p_\phi} \|k_w\|_{F^q_\phi}
\]
Berezin transform and compactness

Note: if $1 < p < \infty$ and A is compact on F^p_ϕ then:

$$\limsup_{|w| \to \infty} |(B(A))(w)| = \limsup_{|w| \to \infty} |\langle Ak_w, k_w \rangle_{F^2_\phi}|$$

$$\leq \limsup_{|w| \to \infty} \|Ak_w\|_{F^p_\phi} \|k_w\|_{F^q_\phi} = 0.$$
Berezin transform and compactness

- Is the converse true?
Is the converse true? No, not always.
Is the converse true? No, not always.

Given a “nice” class \(X \) of functions on \(\mathbb{C}^n \), let \(T_p(X) \) be the \(F^p_\phi \) operator norm closure of the algebra generated by \(\{ T_f : f \in X \} \).
Is the converse true? No, not always.

Given a “nice” class X of functions on \mathbb{C}^n, let $T_p(X)$ be the F_p^ϕ operator norm closure of the algebra generated by $\{T_f : f \in X\}$.

For the classical Fock space setting ($\phi(z) = |z|^2 / 8t$ for some $t > 0$) we have:
Main results for the classical Fock Space

Theorem 1 (Bauer/J.I. ’12, J.I., in preparation)

If $1 < p < \infty$ and A is bounded on F^p_t then A is compact if and only if
$$\lim_{|w| \to \infty} (B(A))(w) = 0$$
and $A \in T_p(L^\infty(\mathbb{C}^n))$.

Question: how much of Theorem 1 can be extended to arbitrary generalized Fock spaces?

Answer: remarkably, a lot of Theorem 1!
Main results for the classical Fock Space

Theorem 1 (Bauer/J.I. ’12, J.I., in preparation)

If $1 < p < \infty$ and A is bounded on F^p_t then A is compact if and only if $\lim_{|w| \to \infty} (B(A))(w) = 0$ and $A \in T_p(L^\infty(\mathbb{C}^n))$.

Furthermore, any bounded A is compact if and only if A is in the F^p_t operator norm closure of $\{T_f : f \in C^\infty_c(\mathbb{C}^n)\}$.
Main results for the classical Fock Space

Theorem 1 (Bauer/J.I. ’12, J.I., in preparation)

If $1 < p < \infty$ and A is bounded on F^p_t then A is compact if and only if $\lim_{|w| \to \infty} (B(A))(w) = 0$ and $A \in T_p(L^\infty(\mathbb{C}^n))$.

Furthermore, any bounded A is compact if and only if A is in the F^p_t operator norm closure of $\{T_f : f \in C^\infty_c(\mathbb{C}^n)\}$.

Question:
Main results for the classical Fock Space

Theorem 1 (Bauer/J.I. ’12, J.I., in preparation)

If $1 < p < \infty$ and A is bounded on F_p^t then A is compact if and only if $\lim_{|w| \to \infty} (B(A))(w) = 0$ and $A \in T_p(L^\infty(\mathbb{C}^n))$.

Furthermore, any bounded A is compact if and only if A is in the F_p^t operator norm closure of \{ $T_f : f \in C_c^\infty(\mathbb{C}^n)$ \}.

Question: how much of Theorem 1 can be extended to arbitrary generalized Fock spaces?
Main results for the classical Fock Space

Theorem 1 (Bauer/J.I. ’12, J.I., in preparation)

If $1 < p < \infty$ and A is bounded on F^p_t then A is compact if and only if
$$\lim_{|w| \to \infty} (B(A))(w) = 0 \text{ and } A \in T_p(L^\infty(\mathbb{C}^n)).$$

Furthermore, any bounded A is compact if and only if A is in the F^p_t operator norm closure of
$$\{T_f : f \in C^\infty_c(\mathbb{C}^n)\}.$$

- Question: how much of Theorem 1 can be extended to arbitrary generalized Fock spaces?
- Answer: remarkably, a lot of Theorem 1!
Difficulties with Generalized Fock spaces

- Difficulties:
 - No explicit form for $K(z, w)$.
 - No explicit useful orthogonal basis (i.e. monomials!).
 - No invariance properties: $U_w f(z) := f(z - w)$ is NOT unitary.

In particular, we do not necessarily have a uniformly bounded family of operators $\{U_w\}_{w \in \mathbb{C}^n}$ on F_p where $$(U_w^k_\eta(z)) = \Theta(\eta, w)^{k_\eta+w(z)} (1)$$ with $|\Theta(\cdot, \cdot)|$ bounded above and below on $\mathbb{C}^n \times \mathbb{C}^n$.

Joshua Isralowitz Compactness of operators
Difficulties with Generalized Fock spaces

Difficulties:

a) No explicit form for $K(z, w)$.

$U_w^k f(z) := f(z - w)$ is NOT unitary.

In particular, we do not necessarily have a uniformly bounded family of operators $\{U_w\}$ for $w \in \mathbb{C}^n$ on F^n_{φ} where

$$ (U_w^k \Theta(\eta, w))^k \eta + w(z) (1) $$

with $|\Theta(\cdot, \cdot)|$ bounded above and below on $\mathbb{C}^n \times \mathbb{C}^n$.

Joshua Isralowitz
Difficulties with Generalized Fock spaces

- Difficulties:
 - a) No explicit form for $K(z, w)$.
 - b) No explicit useful orthogonal basis (i.e. monomials!)
Difficulties with Generalized Fock spaces

Difficulties:
- a) No explicit form for $K(z, w)$.
- b) No explicit useful orthogonal basis (i.e. monomials!)
- c) No invariance properties:
Difficulties with Generalized Fock spaces

- **Difficulties:**
 - a) No explicit form for $K(z, w)$.
 - b) No explicit useful orthogonal basis (i.e. monomials!)
 - c) No invariance properties: $U_w f(z) := f(z - w)k_w(z)$ is NOT unitary.

\[|\Theta(\cdot, \cdot)|\text{ bounded above and below on } C^n \times C^n.\]
Difficulties with Generalized Fock spaces

- Difficulties:
 - a) No explicit form for $K(z, w)$.
 - b) No explicit useful orthogonal basis (i.e. monomials!)
 - c) No invariance properties: $U_w f(z) := f(z - w)k_w(z)$ is NOT unitary.

- In particular, we do **not** necessarily have a uniformly bounded family of operators $\{U_w\}_{w \in \mathbb{C}^n}$ on F^p_ϕ where

$$
(U_w k_\eta)(z) = \Theta(\eta, w)k_{\eta+w}(z)
$$

with $|\Theta(\cdot, \cdot)|$ bounded above and below on $\mathbb{C}^n \times \mathbb{C}^n$.
Let $\mathcal{SL}(\phi)$ be the class of operators A such that A is bounded on F^q_ϕ for some $2 \leq q < \infty$ and where

$$|\langle Ak_z, k_w \rangle^2_{F^2_\phi}| \leq \frac{C}{(1 + |z - w|)^{2n+\delta}}$$

for some $C > 0$ and $\delta > 0$ independent of $z, w \in \mathbb{C}^n$.

Note: if $A \in \mathcal{SL}(\phi)$ then A is bounded on F^p_ϕ for any $1 < p < \infty$ (J.I., in preparation).

Note: $\mathcal{SL}(\phi)$ is a \ast−algebra (J.I., in preparation).
Let $\mathcal{SL}(\phi)$ be the class of operators A such that A is bounded on F^q_ϕ for some $2 \leq q < \infty$ and where

$$|\langle Ak_z, k_w \rangle_{F^2_\phi}| \leq \frac{C}{(1 + |z - w|)^{2n+\delta}}$$

for some $C > 0$ and $\delta > 0$ independent of $z, w \in \mathbb{C}^n$.

Note: if $A \in \mathcal{SL}(\phi)$ then A is bounded on F^p_ϕ for any $1 < p < \infty$ (J.I., in preparation).
Let $\mathcal{SL}(\phi)$ be the class of operators A such that A is bounded on F^q_ϕ for some $2 \leq q < \infty$ and where

$$|\langle Ak_z, k_w \rangle_{F^2_\phi}| \leq \frac{C}{(1 + |z - w|)^{2n+\delta}}$$

for some $C > 0$ and $\delta > 0$ independent of $z, w \in \mathbb{C}^n$.

- Note: if $A \in \mathcal{SL}(\phi)$ then A is bounded on F^p_ϕ for any $1 < p < \infty$ (J.I., in preparation).
- Note: $\mathcal{SL}(\phi)$ is a $\ast-$algebra (J.I., in preparation).
Note: \(T_f \in \mathcal{SL} (\phi) \) if \(f \in L^\infty (\mathbb{C}^n) \).
Main results for generalized Fock spaces

- Note: \(T_f \in \mathcal{SL}(\phi) \) if \(f \in L^\infty(\mathbb{C}^n) \). In particular there exists \(\epsilon > 0 \) independent of \(f \) and \(z, w \in \mathbb{C}^n \) where

\[
|\langle T_f k_z, k_w \rangle_{F_\phi^2}| \leq \|f\|_{L^\infty} e^{-\epsilon|z-w|}.
\]
Main results for generalized Fock spaces

- **Note:** $T_f \in \mathcal{SL}(\phi)$ if $f \in L^\infty(\mathbb{C}^n)$. In particular there exists $\epsilon > 0$ independent of f and $z, w \in \mathbb{C}^n$ where

$$|\langle T_f k_z, k_w \rangle_{F_\phi^2}| \leq \|f\|_{L^\infty} e^{-\epsilon|z-w|}.$$

Theorem 2 (J.I., in preparation)

Let $1 < p < \infty$ and let $A \in \mathcal{SL}(\phi)$. Then A is compact on F_ϕ^p if and only if there exists $N = N(A)$ such that

$$\lim_{|w| \to \infty} \sup_{z \in B(w, N)} |\langle Ak_w, k_z \rangle_{F_\phi^2}| = 0.$$
Main results for generalized Fock spaces

Theorem 3 (J.I., in preparation)

Let A be in the F^2_ϕ operator norm closure of $\mathcal{S}\mathcal{L}(\phi)$. Then A is compact on F^2_ϕ if and only if there exists $N = N(A)$ such that

$$\lim_{|w| \to \infty} \sup_{z \in B(w,N)} |\langle A k_w, k_z \rangle_{F^2_\phi}| = 0.$$
Main results for generalized Fock spaces

Theorem 3 (J.I., in preparation)

Let A be in the F^2_ϕ operator norm closure of $SL(\phi)$. Then A is compact on F^2_ϕ if and only if there exists $N = N(A)$ such that

$$\lim_{|w| \to \infty} \sup_{z \in B(w,N)} |\langle Ak_w, k_z \rangle_{F^2_\phi}| = 0.$$

Note: a slightly weaker version of Theorem 3 was (essentially) proven in Xia/Zheng '13 for the classical Fock space F^2_t.

Question: what about the Berezin transform in F^2_ϕ?!
Main results for generalized Fock spaces

Theorem 3 (J.I., in preparation)

Let A be in the F^2_ϕ operator norm closure of $SL(\phi)$. Then A is compact on F^2_ϕ if and only if there exists $N = N(A)$ such that

$$\lim_{|w| \to \infty} \sup_{z \in B(w, N)} |\langle Ak_w, k_z \rangle_{F^2_\phi}| = 0.$$

- Note: a slightly weaker version of Theorem 3 was (essentially) proven in Xia/Zheng '13 for the classical Fock space F^2_t.
- Question: what about the Berezin transform!?!?
Lemma 4 (J.I., in preparation)

Let A be any bounded operator on F^2_ϕ.
Lemma 4 (J.I., in preparation)

Let A be any bounded operator on F^2_ϕ. If there exists a uniformly bounded family of operators $\{U_w\}_{w \in \mathbb{C}^n}$ on F^2_ϕ as before, then the following are equivalent for any $N > 0$:

a) $\lim_{|w| \to \infty} |(B(A)(w))| = \lim_{|w| \to \infty} |\langle A_k w, k w \rangle|_{F^2_\phi} = 0$

b) $\lim_{|w| \to \infty} \sup_{z \in B(w, N)} |\langle A_k w, k z \rangle|_{F^2_\phi} = 0$.
Lemma 4 (J.I., in preparation)

Let A be any bounded operator on F^2_ϕ. If there exists a uniformly bounded family of operators $\{U_w\}_{w \in \mathbb{C}^n}$ on F^2_ϕ as before, then the following are equivalent for any $N > 0$:

1. $\lim_{|w| \to \infty} |(B(A))(w)| = \lim_{|w| \to \infty} |\langle Ak_w, k_w \rangle_{F^2_\phi}| = 0$
Lemma 4 (J.I., in preparation)

Let A be any bounded operator on F^2_ϕ. If there exists a uniformly bounded family of operators $\{U_w\}_{w\in\mathbb{C}^n}$ on F^2_ϕ as before, then the following are equivalent for any $N > 0$:

(a) $\lim_{|w|\to\infty} |(B(A))(w)| = \lim_{|w|\to\infty} |\langle Ak_w, k_w\rangle_{F^2_\phi}| = 0$

(b) $\lim_{|w|\to\infty} \sup_{z\in B(w,N)} |\langle Ak_w, k_z\rangle_{F^2_\phi}| = 0$.

Joshua Isralowitz
Compactness of operators
Main results for generalized Fock spaces

- Necessary conditions for compactness:

Theorem 5 (J.I., in preparation)

Let $1 < p < \infty$. If A is compact on F_p^∞, then $A \in T_p(C_\infty c(C_n))$.

Furthermore, if A is compact on F_2^∞, then A is in the F_2^∞ operator norm closure of $\{T_f : f \in C_\infty c(C_n)\}$.
Main results for generalized Fock spaces

- Necessary conditions for compactness:

Theorem 5 (J.I., in preparation)

Let $1 < p < \infty$. If A is compact on F^p_ϕ then $A \in \mathcal{T}_p(C_c^\infty(\mathbb{C}^n))$.
Main results for generalized Fock spaces

- Necessary conditions for compactness:

Theorem 5 (J.I., in preparation)

Let $1 < p < \infty$. If A is compact on F^p_ϕ then $A \in \mathcal{T}_p(C^\infty_c(C^n))$.

Furthermore, if A is compact on F^2_ϕ then A is in the F^2_ϕ operator norm closure of $\{T_f : f \in C^\infty_c(C^n)\}$.
Open problems

Question 1:
Does Theorem 3 hold when $p \neq 2$?
Open problems

Question 1:
Does Theorem 3 hold when $p \neq 2$?

Question 2:
Do Theorems 2 and 3 hold when the Berezin transform vanishes at infinity?
Open problems

Question 1:
Does Theorem 3 hold when $p \neq 2$?

Question 2:
Do Theorems 2 and 3 hold when the Berezin transform vanishes at infinity?

Question 3:
Can we get an estimate for the F^2_ϕ essential norm of operators in the F^2_ϕ operator norm closure of $SL(\phi)$?
Open problems

Question 1:
Does Theorem 3 hold when $p \neq 2$?

Question 2:
Do Theorems 2 and 3 hold when the Berezin transform vanishes at infinity?

Question 3:
Can we get an estimate for the F^2_ϕ essential norm of operators in the F^2_ϕ operator norm closure of $SL(\phi)$? What about just for operators in $SL(\phi)$, or even just if A is a Toeplitz operator?
Note: given the existence of a family of operators \(\{U_w\} \) with \(w \in \mathbb{C}^n \) on \(F_2^\phi \) as above, we have
\[
\|A\|_{e} \approx \limsup_{|w| \to \infty} \|A_k w\|_{F_2^\phi}
\]
for all \(A \) in the \(F_2^\phi \) operator norm closure of \(SL(\phi) \) (J.I., in preparation, see also Mitkovski/Wick, preprint).

Question 4: Is every compact operator on \(F_p^\phi \) necessarily in the \(F_p^\phi \) operator norm closure of \(\{T_f : f \in C^\infty c(\mathbb{C}^n)\} \)?
Note: given the existence of a family of operators \(\{U_w\}_{w \in \mathbb{C}^n} \) on \(F^2_\phi \) as above, we have
Note: given the existence of a family of operators \(\{U_w\}_{w \in \mathbb{C}^n} \) on \(F^2_\phi \) as above, we have

\[
\|A\|_e \approx \limsup_{|w| \to \infty} \|A k_w\|_{F^2_\phi}
\]

for all \(A \) in the \(F^2_\phi \) operator norm closure of \(\mathcal{S}\mathcal{L}(\phi) \) (J.I., in preparation, see also Mitkovski/Wick, preprint).
Note: given the existence of a family of operators \(\{U_w\}_{w \in \mathbb{C}^n} \) on \(F_\phi^2 \) as above, we have

\[
\|A\|_e \approx \limsup_{|w| \to \infty} \|Ak_w\|_{F_\phi^2}
\]

for all \(A \) in the \(F_\phi^2 \) operator norm closure of \(SL(\phi) \) (J.I., in preparation, see also Mitkovski/Wick, preprint).

Question 4:
Is every compact operator on \(F_\phi^p \) necessarily in the \(F_\phi^p \) operator norm closure of \(\{T_f : f \in C_\infty^\infty(\mathbb{C}^n)\} \)?
Question 5:

Does the F^p_ϕ operator norm closure of $SL(\phi)$ coincide with $T_p(L^\infty(\mathbb{C}^n))$?
Question 5:

Does the F_p^ϕ operator norm closure of $\mathcal{SL}(\phi)$ coincide with $T_p(L^\infty(\mathbb{C}^n))$? What about even on the classical Fock space?
Question 5:

Does the F^p_ϕ operator norm closure of $\mathcal{SL}(\phi)$ coincide with $T_p(L^\infty(\mathbb{C}^n))$? What about even on the classical Fock space?

- Note: a useful tool developed by D. Suarez for studying related questions on the Bergman space of the disk and ball is the \textbf{k-Berezin transform}.
Question 6:
Can one construct a k-Berezin transform on the classical Fock space?
Question 6:
Can one construct a k-Berezin transform on the classical Fock space?

Thank You!