Carleson and Vanishing Carleson Measures on Radial Trees

Flavia Colonna

George Mason University

Joint work with Joel Cohen and David Singman

March 15, 2013
Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, m the normalized Lebesgue measure on $\partial \mathbb{D}$. For $p > 0$, let $L^p(m)$ be the space of functions f on $\partial \mathbb{D}$ such that

$$\|f\|_{L^p(m)} = \left(\int_{\partial \mathbb{D}} |f(\zeta)|^p \, dm(\zeta) \right)^{1/p} < \infty.$$

For $f \in L^p(m)$, the Poisson integral of f defined as

$$Pf(z) = \int_{\partial \mathbb{D}} P_\zeta(z)f(\zeta) \, dm(\zeta) \quad (z \in \mathbb{D})$$

is harmonic on \mathbb{D}, where $P_\zeta(z) = \frac{1 - |z|^2}{|\zeta - z|^2}$ is the Poisson kernel at ζ.

Given $\theta_0 \in \mathbb{R}$ and $h \in (0, 1)$, let

$$S_{\theta_0, h} := \{re^{i\theta} : 1 - h \leq r < 1, |\theta - \theta_0| \leq h/2\}.$$
Let σ be a positive measure on \mathbb{D}. TFAE:

(a) $\exists C > 0$ such that $\forall \theta_0 \in \mathbb{R}, \forall h \in (0, 1), \sigma(S_{\theta_0}h) \leq C h$.
(b) $\forall p > 1$, the Poisson operator $P : L^p(m) \to L^p(\sigma)$ is bounded.
(c) $\exists C > 0$ such that $\forall h$ harmonic, $\forall \lambda > 0$,

$$\sigma(\{ v \in T : |h(v)| > \lambda \}) \leq C m(\{ \zeta \in \partial \mathbb{D} : h^*(\zeta) > \lambda \}),$$

where $h^*(\zeta) = \sup_{0 < r < 1} |h(r\zeta)|$.

Let σ be a positive measure on \mathbb{D}. TFAE:

(a) $\exists C > 0$ such that $\forall \theta_0 \in \mathbb{R}, \forall h \in (0, 1), \sigma(S_{\theta_0}h) \leq C h$.
(b) $\forall p > 0$, the identity operator from H^p to $L^p(\sigma)$ is bounded, where

$$\|f\|_{H^p}^p := \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < \infty.$$
Given $s \geq 1$, a positive measure σ on \mathbb{D} is an s-Carleson measure if $\exists C > 0$ such that $\forall \theta_0 \in \mathbb{R}$, $\forall h \in (0, 1)$, $\sigma(S_{\theta_0,h}) \leq C h^s$.

Let $s \geq 1$ and σ a positive measure on \mathbb{D}. TFAE:

(a) σ is an s-Carleson measure.
(b) $\forall p > 0$, the identity operator from H^p to $L^{sp}(\sigma)$ is bounded.

σ is an vanishing s-Carleson measure iff

$$\limsup_{h \to 0} \sup_{\theta \in \mathbb{R}} \frac{\sigma(S_{\theta,h})}{h^s} = 0.$$

σ is a vanishing 1-Carleson measure iff $\forall p > 1$, the Poisson operator $P : L^p(m) \to L^p(\sigma)$ is compact.
For $z \in \mathbb{D}$ and $w \in \overline{\mathbb{D}}$, the extended Poisson kernel at (z, w) is defined by

$$P(z, w) = \frac{1 - |z|^2}{|1 - \overline{z}w|^2}.$$

$P(z, w) = P_w(z)$ when $|w| = 1$.

Other characterizations

Given a finite measure σ on \mathbb{D}.

1. σ is a 1-Carleson measure iff

$$\sup_{|z| \in \mathbb{D}} \int_{\mathbb{D}} P(z, w) \, d\sigma(w) < \infty.$$

2. σ is vanishing 1-Carleson iff

$$\lim_{|z| \to 1} \int_{\mathbb{D}} P(z, w) \, d\sigma(w) = 0.$$
Objectives

- Define Carleson squares on a radial tree T.
- Define the notion of extended Poisson kernel on trees endowed with a Green function.
- Develop the notions of s-Carleson and vanishing s-Carleson measure on T.
- Define the harmonic Hardy spaces \mathcal{H}^p on T.
- Obtain a version of Duren’s and Power’s theorems for \mathcal{H}^p as well as weak-type results for $p = 1$.
- A tree is a locally finite, connected and simply-connected graph which we identify with the set of its vertices.

- Two vertices v and w are called neighbors (and we write $v \sim w$) if there exists an edge connecting them.

- A path is a sequence of vertices $[v_0, v_1, \ldots]$ such that $\forall k$, $v_k \sim v_{k+1}$ and $v_k \neq v_{k+1}$.

- Denote by $[v, w]$ the unique path connecting v to w.

- Fixing a root e and a vertex w, v is called a descendant of w if $w \in [e, v]$. The parent of $v \neq e$ is the neighbor v^- of v closest to e.

- The length of a path $[u, v]$ is the number $d(u, v)$ of its edges. The length of a vertex v is $|v| = d(e, v)$.
Carleson squares on a tree T

Given $v \in T$, the sector relative to v is

$$S_v = \{v\} \cup \{w \in T : w \text{ is a descendant of } v\}.$$

∂T is the set of infinite paths $\omega = [e = \omega_0, \omega_1, \omega_2, \ldots)$. Under the topology generated by the sets

$$I_v = \{\omega \in \partial T : v \in [e, \omega)\},$$

∂T is compact and $T \cup \partial T$ is a compactification of T.

Properties

- $\partial T = I_e$.
- If $v, w \in T$, either $S_v \subset S_w$, or $S_w \subset S_v$, or $S_v \cap S_w = \emptyset$.
- $\forall v \in T$, $\partial S_v = I_v$.
- $\forall n \in \mathbb{N}$, $\partial T = \bigcup_{|v|=n} I_v$.

Given \(q \in \mathbb{N} \), a tree is homogeneous of degree \(q + 1 \) if all its vertices have \(q + 1 \) neighbors.

The number of vertices of length \(n \) is \(c_n = \begin{cases} 1 & \text{if } n = 0, \\ (q + 1)q^{n-1} & \text{if } n \geq 1. \end{cases} \)

A nearest-neighbor transition probability is a function \(p : T \times T \to [0, 1] \) such that \(\forall v \in T, \sum_{w \sim v} p(v, w) = 1 \) and \(p(v, u) > 0 \) iff \(v \sim u \).

Laplace operator

Given \(f : T \to \mathbb{R} \), define

\[
\Delta f(v) = \sum_{w \sim v} p(v, w)f(w) - f(v), \quad v \in T.
\]

\(f \) is called harmonic (resp. superharmonic, subharmonic) if \(\Delta f = 0 \) (resp. \(\Delta f \leq 0, \Delta f \geq 0 \)).
For $u, v \in T$, let $F(u, v)$ be the probability that the associated random walk starting at u hits v in positive time.

Green’s function

For $u, v \in T$, let $G(u, v)$ the expected number of visits to vertex v by the random walk starting at u. Then

$$G(v, w) = \begin{cases} (1 - F(v, v))^{-1} & \text{if } v = w, \\ F(v, w)G(w, w) & \text{if } v \neq w. \end{cases}$$

If $[v_0, v_1, \ldots, v_n]$ is the path from v_0 to v_n, then

$$F(v_0, v_n) = \prod_{k=0}^{n-1} F(v_k, v_{k+1}).$$

T is called transient if $G(u, v) < \infty$ for some (hence all $u, v \in T$). A non-transient tree is called recurrent.
TFAE:

1. T is transient.
2. $\exists v \in T$ such that $F(v, v) < 1$.
3. $\forall v \in T$, $F(v, v) < 1$.
4. $\exists f$ positive superharmonic, nonharmonic on T.

From now on we assume T transient.

Poisson kernel

For $v \in T$, $\omega \in \partial T$, let $P_\omega(v)$ denote the value of the Poisson kernel at (ω, v). Every positive harmonic function on T can be written as $P_\mu(\cdot) := \int_{\partial T} P_\omega(\cdot) \, d\mu(\omega)$ for a unique Borel measure μ on ∂T.
Relation between the Poisson kernel, G, and F

\[P_\omega(v) = \frac{G(v, v \wedge \omega)}{G(e, v \wedge \omega)} = \begin{cases} \frac{F(v, v \wedge \omega)}{F(e, v \wedge \omega)} & \text{if } v \wedge \omega \neq v, \\ 1 & \text{if } v \wedge \omega = v \neq e, \\ \frac{1}{F(e, v)} & \text{if } v = e, \end{cases} \]

where $v \wedge \omega$ is the closest vertex ω_k to v.

Homogeneous isotropic case: $p(v, w) = \frac{1}{q+1}$ for $v \sim w$

Given $v \in T$, $\omega \in \partial T$, the Poisson kernel is given by

\[P_\omega(v) = q^{2|v \wedge \omega| - |v|}. \]
A tree is radial if for all \(v \sim w \), \(p(v, w) \) depends only on \(|v| \) and \(|w| \). If so, the degree of a vertex \(v \) depends only on \(|v| \).

For all \(k \geq 0 \), let \(q_k \) be the number of forward neighbors of any vertex of length \(k \). So for \(n \in \mathbb{N} \), \(c_n = \prod_{k=0}^{n-1} q_k \).

Lebesgue measure on \(\partial T \)

Let \(m \) be the probability measure on \(\partial T \) such that

\[
m(l_v) = \frac{1}{c_n}, \text{ for } |v| = n \geq 1.
\]

If \(\mu \) is absolutely continuous with respect to \(m \) with density \(f \) (i.e. \(d\mu(\omega) = f(\omega)dm(\omega) \)), we write \(Pf \) instead of \(P\mu \).
In addition to assuming T radial, we assume $\exists q, C_1, C_2 > 0$ and $\delta_1, r \in (0, 1)$ such that:

A_1: $2 \leq q_j \leq q$ for each j;

A_2: $P_\omega(v) \leq C_1 m(l_v \wedge \omega)^{-1} |v| - |v \wedge \omega|$, for all $v \in T, \omega \in \partial T$;

A_3: $P_\omega(v) \geq C_2 m(l_v)^{-1}$, for all $v \in T, \omega \in l_v$;

A_4: $F(v, v^-) \leq 1 - \delta_1$, for all $v \neq e$.
Extended Poisson kernel

\[\mathcal{P}(v, w) = \begin{cases}
1 & \text{if } v, w \in T, v = e \\
F(e, v \wedge w)^{-1} & \text{if } v, w \in T, v \wedge w = v \neq e, \\
\frac{F(v, v \wedge w)}{F(e, v \wedge w)} & \text{if } v, w \in T, v \wedge w \neq v, \\
P_\omega(v) & \text{if } v \in T, w = \omega \in \partial T.
\end{cases} \]

Relation with the Poisson kernel

Let \(v, w \in T \), and \(\omega \in I_w \). Then

\[\mathcal{P}(v, w) = \begin{cases}
P_\omega(v) & \text{if } v \wedge w = v \wedge \omega, \\
P_\omega(v)F(w, v \wedge \omega)F(v \wedge \omega, w) & \text{if } v \wedge w \neq v \wedge \omega.
\end{cases} \]

In particular, \(\mathcal{P}(v, w) \leq P_\omega(v) \). If \(v \in \{w\} \cup (T \setminus S_w) \), then

\[C_2 m(I_v)^{-1} \leq \mathcal{P}(v, w) \leq C_1 m(I_{v \wedge w})^{-1} r^{|v| - |v \wedge w|} \]
Harmonic Hardy Spaces

For $1 \leq p < \infty$, let $L^p(m)$ be the set of functions f on ∂T such that

$$
\|f\|_{L^p(m)}^p = \int_{\partial T} |f(\omega)|^p \, dm(\omega) < \infty.
$$

Taibleson (1987) defined the harmonic Hardy spaces H^p on T in terms of certain functions in $L^p(m)$.

Given $n \in \mathbb{N}$, $1 \leq p < \infty$ and a function h on T, let

$$
M_p(h, n) = \sum_{|v|=n} |h(v)|^p c_{|v|} = m(l_v) \sum_{|v|=n} |h(v)|^p.
$$

Alternative definition of H^p

Let h be harmonic on T. Then $h \in H^p$ iff

$$
\|h\|_{H^p}^p := \sup_n M_p(h, n) < \infty.
$$
Radial maximal function

For \(h \) harmonic on \(T \), let

\[
h^*(\omega) = \sup_{n \in \mathbb{N}} |h(\omega_n)|, \quad \text{for } \omega \in \partial T.
\]

Characterization of functions in \(\mathcal{H}^p \)

Given \(h \) harmonic and \(1 < p < \infty \), TFAE:

(a) \(h \in \mathcal{H}^p \).
(b) \(\exists f \in L^p(m) \) such that \(h = Pf \).
(c) \(h^* \in L^p(m) \).
(d) \(|h|^p \) has a harmonic minorant.

Theorem

\(\exists C > 0 \) such that \(\forall f \in L^p(m), \)

\[
C\|f\|_{L^p(m)} \leq \|Pf\|_{\mathcal{H}^p} \leq \|f\|_{L^p(m)}.
\]
Hardy-Littlewood maximal function

\[
Mf(\omega) = \sup_{\{v \in T : \omega \in I_v\}} \frac{1}{m(I_v)} \int_{I_v} |f(\tau)| \, dm(\tau), \quad f \in L^1(m).
\]

For \(1 \leq p < \infty\), and \(f \in L^p(m)\), \(Mf < \infty\). Moreover,

1. \(\forall f \in L^1(m), \forall \lambda > 0, (Pf)^\ast \leq \frac{C_1}{1-s} Mf\), and

\[
m(\{\omega : Mf(\omega) > \lambda\}) \leq \frac{1}{\lambda} \|f\|_{L^1(m)}.
\]

2. If \(p > 1\), \(\exists C > 0\) such that \(\forall f \in L^p(m), \|Mf\|_{L^p(m)} \leq C \|f\|_{L^p(m)}\).

Let \(s \geq 1\) and \(\sigma\) a nonnegative measure on \(T\).
\(\sigma\) is an \(s\)-Carleson measure iff

\[
\sigma(S_v) = O(m(I_v)^s) \quad \text{as} \quad |v| \to \infty.
\]

\(\sigma\) is a vanishing \(s\)-Carleson measure iff

\[
\sigma(S_v) = o(m(I_v)^s) \quad \text{as} \quad |v| \to \infty.
\]
Let $1 \leq s < \infty$, and σ a finite measure on T. TFAE:

1. σ is an s-Carleson measure.
2. $\sup_{v \in T} \sum_{w \in T} \mathcal{P}(v, w)^s \sigma(\{w\}) < \infty$.
3. $\forall p > 1, \forall f \in L^p(m), Pf \in L^{sp}(\sigma)$.
4. $\forall p > 1, P : L^p(m) \to L^{sp}(\sigma)$ is bounded.
5. $\exists C > 0$ such that $\forall h$ harmonic, $\forall \lambda > 0$,
 $$\sigma(\{v \in T : |h(v)| > \lambda\}) \leq C (m\{\omega : h^*(\omega) > \lambda\})^s.$$
6. $\exists C > 0$ such that $\forall f \in L^1(m), \forall \lambda > 0$,
 $$\sigma(\{v \in T : |Pf(v)| > \lambda\}) \leq \frac{C}{\lambda^s} \|f\|^s_{L^1(m)}.$$
Proof. (1) \iff (2) is based on the extended Poisson kernel estimates.

(1) \Rightarrow (5): Let h be harmonic. For $\lambda > 0$, define $A = \{ v : |h(v)| > \lambda \}$. Then $\exists \hat{A} \subseteq A$ such that $\bigcup_{v \in \hat{A}} S_v = \bigcup_{v \in A} S_v$, $\bigcup_{v \in \hat{A}} l_v = \bigcup_{v \in A} l_v$, and for $v, w \in \hat{A}$ with $v \neq w$, $S_v \cap S_w = \emptyset$ and $l_v \cap l_w = \emptyset$. Since for $\omega \in l_v$ with $v \in A$, $h^*(\omega) \geq |h(v)| > \lambda$,

$$
\sigma(\{ v : |h(v)| > \lambda \}) \leq \sigma\left(\bigcup_{v \in \hat{A}} S_v \right) = \sum_{v \in \hat{A}} \sigma(S_v) \leq C \sum_{v \in \hat{A}} m(l_v)^s
$$

$$
\leq C \left(\sum_{v \in \hat{A}} m(l_v) \right)^s = C \left(m\left(\bigcup_{v \in \hat{A}} l_v \right) \right)^s
$$

$$
= C \left(m\left(\bigcup_{v \in A} l_v \right) \right)^s \leq C \left(m\{ \omega : h^*(\omega) > \lambda \} \right)^s.
$$
(5) ⇒ (4): Let \(f \in L^p(m) \) and \(h = Pf \). Then

\[
\|h\|_{L^p(\sigma)}^{sp} = \int_0^\infty p\lambda^{p-1}\sigma\{v : |h(v)|^s > \lambda\} \, d\lambda
\]

\[
= \int_0^\infty p\lambda^{p-1}\sigma\{v : |h(v)| > \lambda^{1/s}\} \, d\lambda
\]

\[
\leq C \int_0^\infty p\lambda^{p-1}(m\{\omega : h^*(\omega) > \lambda^{1/s}\})^s \, d\lambda
\]

\[
= C \int_0^\infty sp\lambda^{sp-1}(m\{\omega : h^*(\omega) > \lambda\})^s \, d\lambda
\]

\[
\leq C \int_0^\infty sp\lambda^{sp-1}(m\{\omega : Mf(\omega) > \lambda\})^s \, d\lambda
\]

\[
\leq C\|Mf\|_{L^p(m)}^{sp}
\]

\[
\leq C\|f\|_{L^p(m)}^{sp}.
\]
Let σ be a finite measure on T and $s \geq 1$. TFAE:

1. σ is a vanishing s-Carleson measure.

2. For $1 < p < \infty$, $P : L^p(m) \to L^{sp}(\sigma)$ is compact.

3. \[
\lim_{|v| \to \infty} \sum_{w \in T} P(v, w)^s \sigma(\{w\}) = 0.
\]

4. $\forall \{f_n\}$ in $L^1(m)$ converging to 0 weakly and $\forall \lambda > 0$,
 \[
 \lim_{n \to \infty} \frac{\sigma(\{v \in T : |Pf_n(v)| > \lambda\})}{\|f_n\|_{L^1(m)}^s} = 0.
 \]

5. $\forall \{h_n\}$, h_n harmonic and converging to 0 pointwise, and $\forall \lambda > 0$,
 \[
 \lim_{n \to \infty} \frac{\sigma(\{v \in T : |h_n(v)| > \lambda\})}{m(\{\omega : h_n^*(\omega) > \lambda\})^s} = 0.
 \]

6. $\forall \{f_n\}$ in $L^1(m)$ converging to 0 weakly and $\forall \lambda > 0$,
 \[
 \lim_{n \to \infty} \frac{\sigma(\{v \in T : |Pf_n(v)| > \lambda\})}{m(\{\omega : (Pf_n)^*(\omega) > \lambda\})^s} = 0.
 \]
Let σ be a finite positive measure on \mathbb{D}, $p \geq 1$ and $s \geq 1$. TFAE:

1. σ is a $2s$-Carleson measure.

2. $\exists C > 0$ such that $\forall f$ positive subharmonic on \mathbb{D},

$$
\|f\|_{L^{sp}(\sigma)} \leq C\|f\|_{L^p(dA)}.
$$

In a homogeneous isotropic tree case, we can prove Hastings’ Theorem for $s = 1$ where we take $dA(\{v\}) = q^{-2|v|}$. This prompted us to look at the following questions:

1. Does Hastings’ Theorem hold if dA is replaced by a more general radial measure?

2. If so, what conditions characterize such measures?

3. Can the class of subharmonic functions be replaced by the class of positive harmonic functions?