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Adjoint methods have become the state of the art in recent years for both functional error estimation
and adaptation. But, since most engineering applications rely upon multiple functionals to assess a
physical process or system, an adjoint solution must be obtained for each functional of interest which
can increase the overall computational cost significantly. In this paper, new techniques are presented
for functional error estimation and adaptation which provide the same error estimates and adapta-
tion indicators as a conventional adjoint method, but do so much more efficiently, especially when
multiple functionals must be examined. For functional error estimation, the adjoint solve is replaced
by the solution of an error transport equation for the local solution error and an inner product with
the functional linearization. This method is shown to produce the same functional error estimate as
an adjoint solve. For functional-based adaptation, the bilinear form of the adjoint correction to the
functional is exploited in a manner so as to obtain the adjoint variables in an approximate sense that
are still accurate enough to form useful adaptation indicators. These new methods for functional
error estimation and adaptation are tested using the quasi-1D nozzle problem.

I. Introduction

FOR many computational fluid dynamics (CFD) applications, engineers require information about multiple solution
functionals, such as aerodynamic forces and moments, in order to make a design choice. Such functionals are usu-

ally integrated quantities of the solution over a portion of the computational domain but can also be volume integrals or
discrete values at a given point. As engineers attempt to optimize their designs to balance performance, efficiency, and
cost, the success or failure of an engineering device can hinge on the accuracy of a simulation. Therefore, equipping
engineers with the tools to accurately assess and reduce the numerical error in solution functionals is critical.

Adjoint methods have emerged as the state of the art for both functional error estimation and functional-based
adaptation. These methods have gained popularity due to their rigorous mathematical foundation as well as their
ability to correct solution functionals to higher-order. The solution to the adjoint problem can also be formulated into
an adaptation indicator which targets areas of the domain for adaptation which contribute most to the overall error in
a functional. Giles and Pierce pioneered much of the work on adjoints for functional error estimation by applying the
continuous adjoint method to several canonical problems [1, 2]. Venditti and Darmofal [3] successfully applied the
discrete adjoint method to quasi-1D, inviscid flows using an embedded grid approach where a reconstructed coarse
grid solution was restricted to an embedded fine grid. In this way, they were able to obtain a higher-order error estimate
in a solution functional on a fine grid using a coarse grid solution. The solution to the adjoint problem was then used
to adapt the coarse grid to obtain a better error estimate on the fine grid. Venditti and Darmofal have also had much
success extending their work to 2D inviscid and viscous flows [4, 5].

While adjoint methods have shown great promise for both functional error estimation and adaptation, the solution
to the adjoint problem only supplies an error estimate and adaptivity information for one functional. Typically, engi-
neers require information about multiple functionals such as three forces and three moments for a 3D aerodynamics
application. With the current state of adjoint methods, engineers must solve as many adjoint problems as functionals
for which they require an error estimate. As for functional-based adaptation, Park et al. [6] and Fidkowski and Roe [7]
have found that adaptation based solely on the adjoint solution for one functional can actually increase the error in
another functional. Therefore, even for functional-based adaptation, it is still necessary to solve multiple adjoint prob-
lems in order to improve all functionals of interest. For large engineering problems, solving multiple adjoint problems
can become quite costly as the number of functionals of interest increases both in terms of storage and computational
time. This could ultimately hinder the widespread use of adjoint methods in commercial applications.
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In this paper, new techniques are proposed for performing functional error estimation and adaptation which provide
the same error estimates and adaptation indicators as a conventional adjoint approach, but do so much more efficiently.
For functional error estimation, this paper builds upon the work of Derlaga [8] who was able to show that local
residual-based error estimates can provide the same functional error estimate as an adjoint method. Here, this is proven
by showing that the solution to the adjoint problem is mathematically equivalent to the inner product of a functional
linearization with a local residual-based error estimate. This novel approach not only provides local error estimates for
all primitive variables (e.g., density, velocity, and pressure) everywhere in the domain but also improves the efficiency
of functional error estimation for multiple functionals. Rather than solving n adjoint problems for n functionals, the
same functional error estimates are obtained with one linear solve for the local solution error. For functional-based
adaptation, the bilinear form of the adjoint correction to the functional is exploited using a Krylov subspace method
so that the solution to the adjoint problem can be obtained in an approximate sense but is still accurate enough to drive
adaptation. As byproducts of this approach, a reasonably accurate local error estimate is produced, and, due to the
quadratic convergence of the Krylov solver, an accurate correction to the functional can also be attained. The quasi-1D
Euler equations are used in this work to demonstrate the benefits of the proposed methods. Results are presented for
both subsonic and supersonic flow regimes.

II. Residual-Based Error Estimation
A. Truncation Error

At the center of residual-based error estimation, of which adjoint methods are a subset, is the ability to accurately
estimate the truncation error. Truncation error may be defined using the Generalized Truncation Error Expression
(GTEE) [9, 10] which relates a given set of continuous governing equations, L(·), to a consistently discretized form of
the equations, Lh(·), as

Lh(Ihu) = IhL(u) + τh(u) (1)

where u is a continuous function and τh(·) represents the truncation error. From Eq. 1, it can be seen that the truncation
error is the difference between the continuous and discrete forms of the governing equations and represents higher
order terms which are truncated in the discretization process. For model problems, the truncation error can be shown
to be a function of continuous solution derivatives, local mesh resolution, and grid metrics [11]. The operator, Ib

a , in
Eq. 1 is a restriction or prolongation operator which allows for the transition between a continuous space and a discrete
space; the subscript, a, denotes the starting space and the superscript, b, denotes the resultant space. For the GTEE,
a subscript or superscript h denotes a discrete space on a mesh with a characteristic size, h, and an empty subscript
or superscript represents a continuous space. It should also be noted that there is no restriction on the form of the
continuous and discrete operators, L(·) and Lh(·); the governing equations can be strong form (ODEs and PDEs) or
weak form (integral equations).

In practice, truncation error is usually estimated by operating the continuous governing equations on a reconstruc-
tion of the discrete solution [12, 13]. Since truncation error estimation is a difficult enough task in itself and not the
focus of this paper, it is assumed that an accurate estimate of the truncation error can be made. For all results in this
work, exact truncation error is used instead. To evaluate the exact truncation error, the exact solution to the continuous
governing equations, ũ, is first inserted into Eq. 1

Lh(Ihũ) = IhL(ũ) + τh(ũ). (2)

By definition, ũ exactly satisfies the continuous governing equations, L(ũ) = 0. Therefore, the exact truncation error
is evaluated by operating the discrete equations on a restriction of the exact solution

τh(ũ) = Lh(Ihũ). (3)

The restriction operation required for Eq. 3 for finite volume schemes, for example, consists of integrating the exact
solution over each cell to obtain the exact cell average.

B. Error Transport Equations

Using the GTEE, an error transport equation equation can be derived which relates the truncation error to the local
solution error. First, inserting the exact solution to the continuous equations, ũ, into Eq. 1 and requiring that the
continuous equations be exactly satisfied, i.e. L(ũ) = 0, the GTEE may be simplified as

Lh(Ihũ) =��
��*0

IhL(ũ) + τh(ũ)
= τh(ũ).

(4)
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Next, the discrete equations operating on the exact discrete solution can be subtracted from Eq. 4 since they are
identically zero

Lh(Ihũ) − Lh(uh) = τh(ũ). (5)

Finally, if the solution error, or discretization error, is defined as the difference between the exact solution to the
discrete equations and the exact solution to the continuous equations, εh = uh − Ihũ, and if the governing equations are
linear or linearized [10, 13], the discrete operators in Eq. 5 can be combined and the definition of discretization error
may be inserted to form the discrete form of the error transport equations (ETE),

Lh(εh) = −τh(ũ). (6)

An equivalent continuous form of the ETE can also be derived. The ETE provide a great deal of information regarding
how discretization error behaves and how it is related to the truncation error. Eq. 6 demonstrates that truncation error
acts as the local source for discretization error and that discretization error is convected and diffused in the same
manner as the solution.

For this work, the ETE are formulated in a slightly different manner. Consider an expansion of Lh(Ihũ) about the
exact discrete solution, uh,

Lh(Ihũ) = Lh(uh) −
∂Lh

∂u

∣∣∣∣∣
uh

εh + O(ε2
h). (7)

Inserting Eq. 7 into Eq. 5 and canceling terms, the ETE can instead be written as

∂Lh

∂u

∣∣∣∣∣
uh

εh = −τh(ũ) + O(ε2
h). (8)

To obtain a second order estimate of the discretization error, the Jacobian matrix on the left hand side of Eq. 8 must
be the full, second order linearization of the discrete operator. This matrix can be expensive to compute and store, but
for an implicit code which already contains an adjoint solver, the full linearization should already be available. As
long as an accurate representation of the truncation error is known, Eq. 8, excluding higher order terms, can be used
to solve for a second order accurate estimate of the discretization error in all primal solution variables everywhere in
the computational domain.

C. Adjoint Methods

Since the accuracy of functional error estimates obtained with adjoint methods, like the ETE, rely upon the accuracy
of the truncation error estimate, adjoint methods can be considered a subset of residual-based error estimation. Adjoint
methods were originally used in design optimization to obtain sensitivities of a functional to a set of design param-
eters [14], but have gained much popularity within the CFD community for obtaining functional error estimates and
adaptation indicators. Solutions from the adjoint, or dual, problem can be used to drive an adaptation procedure which
only targets regions of the domain which contribute to the error in the functional of interest. To illustrate how adjoint
methods can be used in this way, first consider an expansion of Lh(Ihũ) about the exact discrete solution, uh,

Lh(Ihũ) = Lh(uh) −
∂Lh

∂u

∣∣∣∣∣
uh

εh +
∂2Lh

∂u2

∣∣∣∣∣
uh

ε2
h

2
+ O

(
ε3

h

)
. (9)

Likewise, consider a similar expansion of a discrete solution functional, Jh, about the exact discrete solution, uh,

Jh(Ihũ) = Jh(uh) −
∂Jh

∂u

∣∣∣∣∣
uh

εh +
∂2Jh

∂u2

∣∣∣∣∣
uh

ε2
h

2
+ O

(
ε3

h

)
. (10)

Combining Eq. 9 and Eq. 10 in a Lagrangian and recalling that Lh(uh) = 0, the discrete solution functional, Jh, can be
rewritten as

Jh(Ihũ) =

Jh(uh) −
∂Jh

∂u

∣∣∣∣∣
uh

εh +
∂2Jh

∂u2

∣∣∣∣∣
uh

ε2
h

2
+ O

(
ε3

h

) + λT

Lh(Ihũ) +
∂Lh

∂u

∣∣∣∣∣
uh

εh −
∂2Lh

∂u2

∣∣∣∣∣
uh

ε2
h

2
+ O

(
ε3

h

) (11)

where λT is a 1xN vector of Lagrange multipliers and N is the total number of unknowns in the system. This operation
is made possible by the fact that the terms in brackets following the Lagrange multipliers are exactly equal to zero by
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Eq. 9. Moving the first term on the right hand side to the left hand side, the error in the functional, εJh , can be defined
as

εJh = Jh(uh) − Jh(Ihũ) =

∂Jh

∂u

∣∣∣∣∣
uh

εh −
∂2Jh

∂u2

∣∣∣∣∣
uh

ε2
h

2
+ O

(
ε3

h

) − λT

Lh(Ihũ) +
∂Lh

∂u

∣∣∣∣∣
uh

εh −
∂2Lh

∂u2

∣∣∣∣∣
uh

ε2
h

2
+ O

(
ε3

h

) . (12)

Upon inspection, Eq. 12 can be viewed as a constrained optimization problem which seeks to minimize the error in
the functional subject to satisfying the discrete governing equations, Lh(uh) = 0. It is left as an exercise for the reader
to show that Eq. 12 can be rewritten in the following form

εJh = Jh(uh) − Jh(Ihũ)︸ ︷︷ ︸
Functional Error

≈ − λTτh(ũ)︸ ︷︷ ︸
Correction

+

[
∂Jh

∂u

∣∣∣∣∣
uh

− λT ∂Lh

∂u

∣∣∣∣∣
uh

]
︸ ︷︷ ︸

Adjoint Problem

εh +

[
−
∂2Jh

∂u2

∣∣∣∣∣
uh

+ λT ∂
2Lh

∂u2

∣∣∣∣∣
uh

]
ε2

h

2︸ ︷︷ ︸
Remaining Error

. (13)

Eq. 13 represents the discrete adjoint formulation of the functional error. An equivalent continuous formulation can be
derived in a similar manner. In the context of adjoint based error estimation, the Lagrange multipliers, λ, are referred
to as the adjoint variables or adjoint sensitivities.

The functional error estimate consists of three parts: (1) the computable adjoint correction, (2) the adjoint problem,
and (3) remaining error terms. The adjoint correction is computed by first solving the adjoint problem such that the
terms in brackets are equal to zero

∂Jh

∂u

∣∣∣∣∣
uh

− λT ∂Lh

∂u

∣∣∣∣∣
uh

= 0. (14)

Rearranging Eq. 14 yields a system of linear equations for the adjoint variables, λ,[
∂Lh

∂u

∣∣∣∣∣
uh

]T

λ =

[
∂Jh

∂u

∣∣∣∣∣
uh

]T

. (15)

The first term on the left hand side of Eq. 15 is the transpose of the Jacobian of the primal solution residual which, for a
code that includes an implicit solver, should already be computed and stored. However, many codes which implement
an implicit solver only store a first order approximation of the Jacobian matrix to decrease storage and computational
costs. For the adjoint solver, a full linearization of the primal residual is required in order to obtain a second order error
estimate. Upon further inspection of Eq. 15, it can be seen that the adjoint variables represent the discrete sensitivities
of the functional to perturbations in the discrete operator making them an ideal candidate for flagging areas of the
domain for adaptation which contribute most to error in the chosen functional.

Once the adjoint variables have been determined, the adjoint correction to the functional may be computed as the
inner product of the adjoint variables with the truncation error. For a second order discretization, for example, the
adjoint correction to the functional converges at a second order rate with grid refinement. If the exact value of the
functional, Jh(Ihũ), is known, the adjoint correction can be used to quantify the remaining error in the functional.
On the other hand, for cases where the exact value of the functional is not known, the adjoint correction can serve
as an estimate of the functional error or can be used to correct the functional. Since the discretization error, εh, also
converges at a second order rate, application of the adjoint correction increases the convergence rate of the functional
error to fourth order. This higher order behavior coupled with the extension to functional-based adaptation have made
adjoints the method of choice for functional error estimation and adaptation in CFD.

III. Improved Functional Error Estimation and Adaptation
A. Error Estimation for Multiple Functionals

Adjoint methods appear to be ideal for functional error estimation and adaptation since both error estimates and adap-
tation indicators can be obtained in one compact procedure. But, since most engineering problems require analyzing
multiple solution functionals, the adjoint problem must be solved for each functional of interest. As the number of
required functionals increases, the cost of solving several adjoint problems can become impractical. For such ap-
plications, more efficient methods for functional error estimation should be used. In this section, a new approach
is presented for obtaining functional error estimates which can increase the efficiency of functional error estimation
when multiple functionals are required. With this approach, n adjoint solves for n functionals are replaced by one lin-
ear solve for the local solution error everywhere in the domain. First, recall that the functional error estimate, Eq. 13,
with the remaining error terms truncated can be written as

εJh ≈ −λ
Tτh(ũ) (16)
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where λT are the adjoint variables obtained from solving the adjoint problem and τh(ũ) is the truncation error. It should
be noted that the right hand side of Eq. 16 is often referred to as the functional correction since it can also be used to
increase the accuracy of the computed functional. Now, rather than explicitly solve for the adjoint variables, Eq. 14
can instead be used to rewrite the adjoint correction as

εJh ≈ −
∂Jh

∂u

∣∣∣∣∣
uh

[
∂Lh

∂u

∣∣∣∣∣
uh

]−1

τh(ũ) (17)

where ∂Jh
∂u

∣∣∣
uh

is a linearization of the discrete functional with respect to the solution everywhere in the domain and[
∂Lh
∂u

∣∣∣
uh

]−1
is the inverse of the residual Jacobian. Computing the inverse of the residual Jacobian is extremely expensive

and should never be used to determine the adjoint correction. Alternatively, using Eq. 8, we can see that the right
two terms in Eq. 17 are equivalent to the local solution error obtained from solving the ETE. Therefore, the adjoint
correction can either be thought of as the inner product of the adjoint solution with the truncation error or as the inner
product of the ETE solution with the functional linearization

εJh ≈

Adjoint Problem︷ ︸︸ ︷
−
∂Jh

∂u

∣∣∣∣∣
uh

[
∂Lh

∂u

∣∣∣∣∣
uh

]−1

τh(ũ)︸ ︷︷ ︸
Error Transport Equations

. (18)

Rather than solve n adjoint problems for n functionals, the ETE are instead solved once. It is important to note that the
computation time associated with the required inner product for computing the functional correction is present in both
the standard adjoint approach and the ETE approach. Therefore, the computational savings of the ETE approach are
on the order of the time required for n − 1 linear solves. Another important benefit of the ETE approach is that, unlike
the standard adjoint approach, the local solution error is also obtained everywhere in the domain. In Section V, the
ETE approach is shown to obtain the same functional error estimate as an adjoint method. The computational savings
that can be achieved are also presented.

B. Approximate Adjoints for Functional Error Estimation and Adaptation

For functional-based adaptation, the adjoint variables are a logical candidate for an adaptation indicator since they
represent the sensitivity of the functional with respect to perturbations of the residual operator. An adaptation indicator
formed with the adjoint variables will target regions of the domain which contribute most to the error in the functional.
One flaw of the ETE approach to functional error estimation is that the engineer no longer has access to the adjoint
variables for performing adaptation. In order to perform both adaptation and error estimation, the adjoint problem
must typically be solved to convergence. But, since the formulation of the adaptation indicator is somewhat heuristic
in nature, for adaptation purposes the adjoint variables do not need to be extremely accurate. They only need to be
accurate enough to capture the main features of an adaptation indicator based on the fully converged adjoint solution. In
this section, an alternative approach based upon Krylov subspace methods is presented which can meet both needs: an
accurate functional error estimate as well as approximate adjoint variables for adaptation. This technique only requires
the adjoint problem and the ETE be solved approximately. With one linear solve, approximate adjoint variables are
obtained for adaptation alongside a reasonably accurate local error estimate. Due to the quadratic convergence of the
Krylov subspace method, the adjoint correction can also be obtained just as accurately as the standard adjoint approach
or the ETE approach to functional error estimation.

Approximating Bilinear Form by Krylov Subspace Methods

The evaluation of the adjoint correction in Eq. 17 is equivalent to evaluating a bilinear form

BF(b, c; A) = cT A−1b, (19)

where A is a real-valued n × n matrix, and b and c are real-valued n × 1 vectors. Problems of this form appear
in many applications, such as scattering amplitude [15], computational fluid dynamics [16], quantum physics and
inverse problems [17], and naturally arise in numerical linear algebra, for example, while computing error bounds.
With this approach, the goal is to approximate Eq. 19 without directly computing the inverse of A. The bilinear form
in Eq. 19 can be approximated by solving two linear systems simultaneously

Ax = b ⇔ x = A−1b,

AT y = c ⇔ y = A−T c,
(20)
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and computing
yT Ax =

(
A−T c

)T
AA−1b = cT A−1b. (21)

The second system in Eq. 20 is referred to as an adjoint system whereas the first system is referred to as the main
system. Many Krylov subspace methods (i.e. BiCG [18,19], LSQR [20]) solve the adjoint system and the main system
simultaneously. This property has been exploited in the literature [15, 21, 22].

One approach to approximating the bilinear form presented in [21] is based on BiCG [19]. BiCG is used to solve
the main system and the solution of the adjoint system is obtained concurrently. With this method, one constructs
two Krylov subspaces associated with the main and the adjoint systems, Vk = span{r0, Ar0, . . . , Ak−1r0} and Ṽk =

span{s0, AT s0, . . . , AT k−1s0}, where r0 and s0 are the initial residuals of the respective systems. The method enforces,
in exact arithmetic, Vk ⊥b Ṽk. This approach has two major advantages. Firstly, the convergence of the method is
quadratic. Therefore, if ‖ri‖ ≤ h1, ‖si‖ ≤ h2, where ri and si are the residuals for the main and adjoint systems,
respectively, and h = max(h1, h2), then the error in the approximation to the bilinear form is smaller than a constant
multiple of h1h2. Also, if an approximation of the bilinear form is needed to an accuracy ε, then the main and adjoint
systems need to only be solved to an accuracy of

√
ε. With regards to functional error estimation and adaptation, this

means that approximate adjoint variables can be obtained for adaptation while also obtaining an accurate functional
correction. The second advantage is that the approximation to Eq. 19 is computed and updated as a part of the BiCG
iteration with very minimal additional cost due to the recurrences demonstrated by Strakos̆ and Tichý [21]. The
recurrences rely only on the orthogonality relationships between vectors generated and updated in the neighboring
iterations, which minimizes the adverse effects of deterioration from orthogonality resulting from finite precision
arithmetic.

In this work, the approach of Strakos̆ and Tichý [21] is used. In their paper, the bilinear form is approximated at
iteration n of the solver using the property

cT A−1b =

n−1∑
j=0

α jsT
j r j + sT

n A−1rn, (22)

where s j = AT y j − c, r j = Ax j − b, and x j and y j are approximations to the solutions of main and adjoint systems,
respectively, computed at iteration j of BiCG. The quantity α j is a scalar used by the BiCG iteration. As n increases,
the residuals and the quantity sT

n A−1rn become small. Thus, the last term can be skipped, and Eq. 22 becomes

BF(b, c; A) ≈
n−1∑
j=0

α jsT
j r j (23)

where the initial approximation is computed as

cT A−1b =
(
r̃0 + AT x̃0

)T
A−1 (r0 + Ax0)

= r̃T
0 A−1r0 +

(
r̃0 + AT x̃0

)T
x0 + x̃T

0 r0

= r̃T
0 A−1r0 + cT x0 + x̃T

0 r0 ⇒ BF0 = cT x0 + x̃T
0 r0.

(24)

At the conclusion of the BiCG iteration, the approximate solutions to the main and adjoint systems, x j and y j, provide
a local error estimate as well as variables for formulating an adaptation indicator. The approximate solution to the
bilinear form, Eq. 19, can also be used as a functional error estimate.

IV. Test Case: Quasi-1D Nozzle
The quasi-1D nozzle problem is used to investigate the proposed methods for functional error estimation and adapta-
tion. The nozzle is characterized by a contraction through which the flow accelerates followed by a diverging section
which allows the flow to expand subsonically or supersonically depending upon the pressure at the nozzle exit. Since
the quasi-1D nozzle problem has an exact solution, it is the ideal test bed for investigating these new methods.

The geometry of the nozzle is taken from Jackson and Roy [23] and has a Gaussian area distribution given by

A(x) = 1 − 0.8e
(
−x2

2σ2

)
, x ∈ [−1, 1] (25)

where σ is chosen as 0.2. For this study, two flow conditions are examined: (1) fully subsonic flow through the
diverging section and (2) fully supersonic flow through the diverging section. The area distribution and the Mach
number distributions for both the subsonic and supersonic cases can be seen in Fig. 1.
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At the inflow of the nozzle, the stagnation pressure and temperature are fixed at 300 kPa and 600 K, respectively.
The Mach number is extrapolated from the interior to set the inflow state at the face. The outflow boundary conditions
depend upon the local character of the flow in the diverging section. For supersonic flow, all variables in the interior
are extrapolated to the face to set the outflow flux. For subsonic flow, a back pressure is set and velocity and density
are extrapolated from the interior. The back pressure for all subsonic results is set to 297.485 kPa.

Figure 1: Gaussian Nozzle: Area/Mach Number Distribution

For this study, five discrete solution functionals are used to test the proposed methods for functional error estima-
tion and adaptation. A listing of these functionals is given below. Take note that the continuous form of the functional
is given by J(·) and the discrete form of the functional is given by Jh(·).

Integral of Pressure : J(ũ) =

∫ 1

−1
p dx ⇒ Jh(uh) =

Ncells∑
i=1

pi∆xi

Integral of Entropy : J(ũ) =

∫ 1

−1
log

(
p
ργ

)
dx ⇒ Jh(uh) =

Ncells∑
i=1

log
(

pi

ρ
γ
i

)
∆xi

Total Mass : J(ũ) =

∫ 1

−1
ρA dx ⇒ Jh(uh) =

Ncells∑
i=1

ρiAi∆xi

Integral of Mass Flow : J(ũ) =

∫ 1

−1
ρuA dx ⇒ Jh(uh) =

Ncells∑
i=1

ρiuiAi∆xi

Static Thrust : J(ũ) = ρeu2
e Ae + (pe − pa) Ae ⇒ Jh(uh) = ρeu2

e Ae + (pe − pa) Ae

(26)

For the static thrust functional, the ambient pressure, pa, is selected as pa = 5.5 kPa for the supersonic case so that the
nozzle is operating at an underexpanded condition. For the subsonic case, the ambient pressure is set to the previously
specified back pressure.

A. Numerical Methods

1. Quasi-1D Euler Equations

The flow in the nozzle is modeled using the quasi-1D form of the Euler equations. The quasi-1D Euler equations in
weak, conservation form for a control volume, Ω+, fixed in space are

∂

∂t+

∫
Ω+

~Q+ dΩ+ +

∮
∂Ω+

~F+ dS + =

∫
Ω+

~S + dΩ+ (27)

where ~Q+ is the vector of conserved variables, ~F+ is the vector of inviscid fluxes, and ~S + is a source term. The notation
(·)+ denotes a dimensional quantity. These equations are a statement of conservation of mass, momentum, and energy
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for the fluid. For the quasi-1D Euler equations, the vector of conserved variables, ~Q+, the inviscid fluxes, ~F+, and the
source term, ~S +, are given by

~Q+ =

 ρ
+

ρ+u+

ρ+e+
t

 , ~F+ =

 ρ+u+

ρu+2 + p+

ρ+u+h+
t

 , ~S + =

 0
p+ dA+

dx+

0

 (28)

where ρ+ is the fluid density, u+ is the fluid velocity, p+ is the static pressure, e+
t is the total energy, h+

t is the total en-
thalpy, and dA+

dx+ describes how the cross-sectional area of the nozzle changes down its length. The system of equations
is closed using the equation of state for a perfect gas such that the total energy, e+

t , and total enthalpy, h+
t , are given by

e+
t =

p+

ρ+(γ − 1)
+

u+2

2
, h+

t =
γp+

ρ+(γ − 1)
+

u+2

2
(29)

where γ is the ratio of specific heats for a perfect gas which for air is γ = 1.4.

2. Primal Solver

The quasi-1D Euler equations are discretized using a second order, cell-centered finite-volume discretization. The
inviscid fluxes are computed using Roe’s flux difference splitting scheme [24]. MUSCL extrapolation [25] is used to
reconstruct the primitive variables to the face in order to obtain second order spatial accuracy. Boundary conditions
are enforced weakly through the fluxes.

The quasi-1D Euler equations are coded in a dimensional and non-dimensional form to allow for greater flexibility.
In order to write the quasi-1D Euler equations in a non-dimensional form, Eq. 27 is first discretized for cell i as

A+
i ∆x+

i

∆t+

[
~Q+

n+1
i − ~Q+

n
i

]
+ ~R+

n+1
i = 0 (30)

where A+
i is the cross-sectional area at the center of cell i, ∆x+

i is the size of cell i, ∆t+ is the time step, and ~R+
n+1
i is

the steady-state residual. The steady-state residual can be written as

~R+
n+1
i = ~F+

n+1
i+ 1

2
A+

i+ 1
2
− ~F+

n+1
i− 1

2
A+

i− 1
2
− ∆x+

i
~S +

n+1
i (31)

where ~F+
n+1
i+ 1

2
and ~F+

n+1
i− 1

2
are the inviscid fluxes at the faces on each side of cell i and A+

i+1/2 and A+
i−1/2 are the cor-

responding face areas. The non-dimensionalization is performed by normalizing each dimensional quantity in the
following manner

T =
T +

Tre f
ρ =

ρ+

ρre f
u =

u+

are f

p =
p+

ρre f a2
re f

et =
e+

t

a2
re f

ht =
h+

t

a2
re f

x =
x+

Lre f
t =

t+

L/are f
A =

A+

Are f

(32)

where the reference values are chosen as

Tre f = T0 ρre f = ρ0 are f =
√
γRTre f

Lre f = Lnozzle Are f = Athroat.
(33)

It should be noted that T0 is the stagnation temperature, ρ0 is the stagnation density, Lnozzle is the length of the nozzle,
and Athroat is the minimum area of the nozzle cross-section. By normalizing Eq. 30 with Eq. 32, the quasi-1D Euler
equations may be written in a non-dimensional form as

Ai∆xi

∆t

[
~Qn+1

i − ~Qn
i

]
+ ~Rn+1

i = 0 (34)

where the non-dimensional steady-state residual ~Rn+1
i is given by

~Rn+1
i = ~Fn+1

i+ 1
2
Ai+ 1

2
− ~Fn+1

i− 1
2
Ai− 1

2
− ∆xi~S n+1

i . (35)
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Numerical solutions are marched in pseudo-time to a steady-state using an implicit time-stepping scheme developed
by Beam and Warming [26]  Ω

∆t
I +

∂~R

∂ ~Q

n

∆ ~Qn = −~Rn (36)

where Ω
∆t I is a matrix with the volume and time step contribution from each cell along the main diagonal, ∂~R

∂ ~Q
is the

residual Jacobian matrix, ∆ ~Qn is a forward difference of the conserved variable vector given by ∆ ~Qn = ~Qn+1 − ~Qn,
and ~Rn is the steady-state residual evaluated at time level n. For this implementation, only the primitive variables are
stored, therefore, a conversion matrix is added to convert the conserved variable vector, ~Q, to the primitive variable
vector, ~q, such that Eq. 36 is instead written as Ω

∆t
∂ ~Q
∂~q

+
∂~R
∂~q

n

∆~qn = −~Rn (37)

where ∂ ~Q
∂~q is the conversion matrix and ~q is the primitive variable vector given by ~q =

[
ρ, u, p

]T . For the primal solver,

the residual Jacobian matrix, ∂~R
∂~q , need not be the full second order linearization since the left hand side of Eq. 37 is only

used to drive the right hand side to zero. In order to maintain second order spatial accuracy, though, it is mandatory
that the residual be a second order discretization.

3. Dual Solver & Error Transport Equation Solver

The discrete adjoint problem is solved in a similar manner to that outlined in [27]. The adjoint problem is marched in
pseudo-time to a steady-state using an implicit time-stepping algorithm much like the primal solver Ω

∆t
∂ ~Q
∂~q

+
∂~R
∂~q

T

∆~λn = −~Rn
ad j (38)

where ~Rn
ad j is the adjoint residual given by

~Rn
ad j = −

[
∂Jh

∂~q

]T

+

∂~R
∂~q

T

~λn (39)

and ∆~λn is a forward difference of the adjoint variables given by ∆~λn = ~λn+1 − ~λn. This type of algorithm is often
used because the pseudo-time-stepping term increases the diagonal dominance of the left hand side matrix making for
a more robust adjoint solver. Also, similar to the primal solver, the residual Jacobian of the primal solution on the left
hand side of Eq. 38 need not be the full second order linearization. But, in order to obtain a usable adjoint solution, the
residual Jacobian on the right hand side of Eq. 38 is required to be the full second order linearization. The linearization
of the primal residual is performed via hand differentiation.

The ETE are solved in a similar manner using Ω

∆t
∂ ~Q
∂~q

+
∂~R
∂~q

 ∆εn
h = −~Rn

ET E (40)

where ~Rn
ET E is the ETE residual given by

~Rn
ET E = τh(ũ) +

∂~R
∂~q
εn

h (41)

and ∆εn
h is a forward difference of the discretization error given by ∆εn

h = εn+1
h − εn

h. Both the adjoint problem and the
ETE, Eq. 38 and Eq. 40, are solved using GMRES [28]. For the code used in this study, there is also the capability of
solving the adjoint problem and the ETE directly using GMRES. This design choice is made so that runtimes of the
adjoint and ETE solves can be fairly compared with the bilinear form solve.
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4. Preconditioning

Krylov methods, such as BiCG and GMRES, often need a preconditioner. By multiplying by a preconditioner matrix,
either on the left, on the right, or on both sides of the system, one obtains a new system with much better convergence
properties, i.e.

Ax = b ⇒ M1AM2 x̃ = M1b, x = M2 x̃. (42)

The matrix M1 in Eq. 42 is called a left preconditioner, and the matrix M2 is called a right preconditioner. There exist
many preconditioning techniques, such as Incomplete LU factorization (ILU) [29] and Sparse Approximate Inverse
(SAI) [30, 31]. While ILU is arguably the most popular preconditioning technique, due to the small dimensionality of
the quasi-1D nozzle problem, the ILU preconditioner is very close to a true LU factorization and does not allow us to
show the benefits of the bilinear form approach to functional error estimation and adaptation. When testing the bilinear
form solver, SAI is used instead to precondition both BiCG and GMRES. SAI is considered a weak preconditioner,
yet due to its exceptional parallel properties has been rediscovered in recent years and gained popularity as a GPU
preconditioning strategy [32]. Since the true inverse of a sparse matrix is often dense, it is necessary to select an initial
non-zero pattern for SAI. In this paper, the non-zero pattern of the SAI preconditioner is set to be identical to the
non-zero pattern of A unless specified otherwise. Since the code used in this study is capable of solving the governing
equations in a dimensional and non-dimensional form, matrix scaling is also included as a preconditioning technique
for the dimensional matrix systems. Matrix scaling is performed by applying row scaling from the left and column
scaling from the right

Ax = b ⇒ DrADc x̃ = Drb (43)

where Dr and Dc are diagonal matrices whose entries are

Dr,i =
1∑n

j=1 |Ai, j|
Dc, j =

1∑n
i=1 |Ai, j|

. (44)

5. Grid Adaptation

There are many types of solution adaptation procedures, but for this study, solution adaptation is performed via mesh
movement, or r-adaptation. Mesh movement is accomplished by applying an equidistribution principle to the mesh
given some adaptation indicator or weight function. During the equidistribution process, nodes of the mesh are shifted,
as illustrated in Fig. 2, in order to make the quantity cell size (i.e. ∆x in 1D) times weight function equal-valued in all
cells across the domain.

Figure 2: Weight Function Equidistribution [23]

With this type of adaptation, the number of nodes in the mesh remains constant throughout the adaptation process.
This can arguably lead to significant computational savings over other forms of adaptation, such as h-adaptation, where
the number of nodes in the mesh can increase. The equidistribution principle in 1D can be stated as the following

d
dξ

(
w(x)

dx
dξ

)
= 0 (45)

where w(x) is the weight function, x is the physical location of the mesh, and ξ is the location of the mesh in a
uniformly spaced computational domain [33]. Eq. 45 is discretized using second order central finite differences as

1
∆ξ

(w(xn
i+1) + w(xn

i )
2

)
xn+1

i+1 − xn+1
i

∆ξ
−

(
w(xn

i ) + w(xn
i−1)

2

)
xn+1

i − xn+1
i−1

∆ξ

 = 0 (46)

Prior to conducting adaptation, care must be taken to formulate the weight function in a manner which will achieve
the desired adaptive behavior. For this work, the weight function developed by Derlaga et al. [34, 35] and Derlaga [8]
is used to drive the adaptation process. This weight function is formulated by normalizing the adjoint-weighted
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truncation error in cell i on a given mesh, k, by the L2-norm of the adjoint-weighted truncation error on the initial mesh
and averaging over N governing equations

wi =
1
N

N∑
j=1

∣∣∣λi, jτh(Ihũ)k
i, j

∣∣∣∣∣∣∣∣∣λ jτh(Ihũ)k=1
j

∣∣∣∣∣∣
2

(47)

where the number of equations for the quasi-1D Euler equations is N = 3.
Often with this type of adaptation, the weight function can exhibit high frequency behavior which can destabilize

the mesh movement procedure. In order to maintain a stable adaptation process, the weight function is smoothed prior
to its application using an elliptic smoother,

wsmooth
i =

wi−1 + 4wi + wi+1

6
. (48)

For this work, the number of smoothing passes is set to Nsmooth = 15. Depending upon the strength of the weight
function, under-relaxation of the grid update may also need to be performed to ensure the adaptation process converges.
Under-relaxation of the grid update is accomplished using

xnew = xold + ω
(
xnew

computed − xold
)

(49)

where the under-relaxation factor, ω, is set to ω = 0.05. The L2-norm of the weight function times the cell area for
each cell in mesh k normalized by the initial value on the starting mesh

Υ =
||wi∆xi||

k
2

||wi∆xi||
k=1
2

(50)

is used to monitor the convergence of the adaptation process. Adaptation is said to be converged when Υ ≤ 0.08.

V. Results & Discussion
In this section, results are presented for subsonic and supersonic cases of the quasi-1D nozzle problem which demon-
strate the benefits of the proposed methods over a traditional adjoint approach. It should be noted that during prelim-
inary testing the dimensional and non-dimensional form of the quasi-1D Euler equations were examined. Since the
dimensional primitive variables are vastly different magnitudes, for example density is O(1) and pressure is O(105),
the residual Jacobian matrices are very poorly scaled. For the finest grids, the residual Jacobian matrices are essentially
singular with conditions numbers of O(1014). Row and column scaling is used to improve the condition of the matrix,
but, even with scaling, the non-dimensional residual Jacobian matrices are still better conditioned. A comparison
of the condition numbers for the dimensional and non-dimensional residual Jacobian matrices for both subsonic and
supersonic cases may be found in Appendix A. It is also found that the poor conditioning of the dimensional residual
Jacobian matrices affects the accuracy of the bilinear form solution. For these reasons, all results in this section are
produced using the non-dimensional form of the quasi-1D Euler equations.

A. Error Estimation for Multiple Functionals

The ETE and the adjoint problem are solved on 9 systematically refined, uniformly spaced grids ranging from 32 cells
to 8192 cells where the refinement factor between grid levels is r = 2. The solution to each system is obtained using
the pseudo-time-stepping technique outlined in Section IV with the pseudo-time-step fixed at ∆t = 0.5. Functional cor-
rections are computed for the five functionals given in Section IV. The base error and remaining error after correction
are plotted for each functional in Fig. 3 against the number of cells in the grid. Results presented here are only for the
subsonic case. Similar results were obtained for the supersonic case. Fig. 3 illustrates that the ETE are able to obtain
the same functional correction as a standard adjoint approach. The differences between the remaining error obtained
with a standard adjoint approach and the remaining error obtained with the ETE approach are indistinguishable. Upon
application of the functional correction, the remaining error in each functional converges at a higher order. While the
formal order of the discretization is p f = 2, the base error in each functional converges at a 3rd order rate and the
remaining error converges at a 6th order rate. This behavior was also observed by Venditti and Darmofal [3] for a
similar subsonic test case. For the supersonic case, the base error and remaining error converge at the expected rates,
2nd order and 4th order, respectively. In addition to an accurate functional error estimate, it should also be noted that
with the ETE approach a local error estimate is obtained everywhere in the domain. Plots of the exact discretization
error and the error estimate obtained with the ETE for each primitive variable on a 256 cell grid may be seen in Fig. 4.
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a) Functional: Integral of Pressure b) Functional: Integral of Entropy

c) Functional: Total Mass d) Functional: Integral of Mass Flow

e) Functional: Static Thrust

Figure 3: Functional Error Convergence – Subsonic Case
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a) Discretization Error: Density b) Discretization Error: Velocity

c) Discretization Error: Pressure

Figure 4: Discretization Error – Subsonic Case

The total runtime need to compute functional corrections for all five functionals is also monitored. Runtimes for
the standard adjoint approach and the ETE approach for each grid level are given in Table 1. The speedup gained by
using the ETE approach is also quoted. Speedup is defined as the total solve time of the adjoint approach divided by
the total solve time of the ETE approach. Table 1 indicates the significant computational savings that can be attained
with the ETE approach to functional error estimation. Over most grid levels, approximately a 5x speedup is achieved.
For this test case, this can be expected since five adjoint solves are replaced with one ETE solve. As long as the runtime
for each individual adjoint solve and the ETE solve are of the same order magnitude, computational savings on the
order of n − 1 adjoint solves can be expected with the ETE approach where n is the number of functionals of interest.
With the ETE approach, the computational efficiency of functional error estimation is drastically improved without
any loss of accuracy. These findings have important implications for the application of functional error estimation,
especially for large engineering problems which typically require multiple functionals. Engineers should no longer be
restricted to a limited number of solution functionals because of computational costs.
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Table 1: Runtime (sec) – Adjoint and Error Transport Equation Solves

Ncells Adjoint Solve ETE Solve Speedup
32 0.6755 0.2385 2.8326
64 1.3021 0.3638 3.5790

128 2.1773 0.5380 4.0469
256 3.7016 0.8409 4.4022
512 6.5797 1.3798 4.7686

1024 13.9797 2.7002 5.1772
2048 32.3345 5.5734 5.8015
4096 63.9561 11.7629 5.4371
8192 130.0427 23.7000 5.4870

B. Approximate Adjoints for Functional Error Estimation and Adaptation

The Krylov subspace method outlined in Section III is applied to 6 systematically refined, uniformly spaced grids
ranging in size from 32 cells to 1024 cells. BiCG is tested using three bilinear form convergence tolerances: κBF =

1e-1, 1e-2, 1e-3. These tolerances are selected so that an assessment can be made of how accurate the bilinear form
solve actually needs to be in order to obtain an accurate local error estimate, approximate adjoint variables with which
to perform adaptation, and an accurate functional correction. SAI is used to precondition each bilinear form solve.
The L2-norm of the error in the ETE solve, ||Ax − b||2, the L2-norm of the error in the adjoint solve, ||AT y − c||2, and
the relative error in the approximation of the adjoint correction,

εBF =
|BFapprox − BFexact |

|BFexact |
, (51)

are monitored for each bilinear form tolerance. These errors are tabulated for each grid level in Table 2. All results in
this section are presented for the supersonic case of the quasi-1D nozzle. Similar results were found for the subsonic
case but are not shown here. Also, the functional of interest is selected as the integral of pressure along the nozzle. As
can be seen in Table 2, the error in the ETE solve is small and does not vary greatly with the bilinear form tolerance.
This means that, even for modest convergence of the bilinear form, a relatively accurate local error estimate can still be
obtained. The approximate adjoint variables, on the other hand, are not nearly as accurate as the local error estimate.
But, an argument can be made that the accuracy of the adjoint variables produced by the bilinear form solve are
still accurate enough to be used to perform adaptation. To illustrate this, adaptation is performed on a 128 cell grid
whose cells are initially uniformly spaced. Adaptation indicators are formed using exact adjoint variables as well as
approximate adjoint variables obtained from the bilinear form solve where the bilinear form tolerance is selected as
κBF = 1e-3. The adapted grids produced by each method are plotted together in Fig. 5 as the cell size versus the
cell-center location. Although some variation can be seen downstream of the throat, the adapted grids in Fig. 5 are
qualitatively very similar. The bilinear form approach is able to capture many of the main features of the adjoint
adapted grid. In terms of functional-based adaptation, this application of the bilinear form result demonstrates that
adjoint variables produced in an approximate sense can achieve the same end as adjoint variables produced from a
traditional adjoint approach.

As for the approximation of the adjoint correction, the selected bilinear form tolerance affects how accurate the
computed correction is for a given grid level. Decreasing the bilinear form tolerance increases the accuracy of the
adjoint correction. As can be seen in Table 2, the approximation to the adjoint correction is more than accurate enough
to be used to correct the functional. For instance, on the finest grid, the approximate adjoint correction obtained with
a bilinear form tolerance of κBF = 1e-3 differs from the true value by less than 0.003%. To further demonstrate the
accuracy of the bilinear form result, the approximate adjoint correction is applied to the functional, and the remaining
error computed with the bilinear form approach is compared to the true remaining error. Fig. 6 illustrates that the
bilinear form approach is able to achieve the same remaining error as a traditional adjoint approach. A bilinear form
tolerance of κBF = 1e-3 performs the best and is able to capture the remaining error over a larger range of grids since it
enforces a more accurate bilinear form solve. It should be noted that the bilinear form solve did not initially converge
on the finest grid level with the non-zero pattern of the SAI preconditioner taken to be the same as the residual Jacobian
matrix. In order to achieve convergence, the non-zero pattern of the SAI preconditioner is increased approximately
5x.
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Table 2: Bilinear Form Errors – Adjoint Solve, Error Transport Equation Solve, and Adjoint Correction

κBF = 1e-1 κBF = 1e-2 κBF = 1e-3
Ncells ||Ax − b||2 ||AT y − c||2 εBF ||Ax − b||2 ||AT y − c||2 εBF ||Ax − b||2 ||AT y − c||2 εBF

32 9.93e-02 3.26e-01 3.04e+00 4.64e-02 1.01e-01 1.21e-01 2.38e-03 9.51e-03 5.04e-05
64 1.58e-02 3.97e-01 3.33e-01 1.12e-03 5.79e-02 1.63e-03 6.97e-04 1.33e-02 9.70e-06

128 4.15e-03 2.64e-01 2.04e+00 8.31e-04 4.96e-02 9.72e-04 3.61e-04 1.49e-02 1.91e-05
256 3.41e-04 3.60e-02 5.71e-07 3.30e-04 1.42e-02 2.53e-07 4.35e-05 3.88e-03 2.50e-07
512 1.49e-04 3.31e-02 1.89e-05 3.82e-05 4.47e-03 1.89e-05 1.41e-05 3.84e-03 1.89e-05

a1024 2.76e-05 3.71e-02 1.37e-02 1.67e-06 2.70e-01 1.29e-04 1.68e-07 6.30e-02 2.43e-05

aRequired better preconditioner

Figure 5: Comparison of Adapted Grids Figure 6: Bilinear Form Functional Error Convergence

Lastly, runtimes of the bilinear form solve are examined in order to assess the cost of decreasing the bilinear form
tolerance. Since the bilinear form solve produces a local error estimate, adjoint variables for adaptation, and an adjoint
correction, the runtime of the bilinear form solve is compared to the traditional approaches which achieve the same
end, i.e. solving the adjoint problem and the ETE independently. In order to make a fair comparison, the adjoint
problem and the ETE are solved directly using GMRES with the Krylov size fixed at 45. Runtimes for each grid level
and each bilinear form tolerance are tabulated in Table 3. The bilinear form solve achieves tremendous speedups over
the combined runtime of the adjoint and ETE solves with speedups ranging on average between 30x - 50x on the finest
grids. For this problem, it does not appear that much performance is lost by decreasing the bilinear form tolerance.
This feature could be problem dependent and should be examined further. Some care should be taken when comparing
runtimes for bilinear form tolerances of κBF = 1e-2 and κBF = 1e-3 since faster runtimes are reported for the lower
bilinear form tolerance. This is attributed to the small runtimes of the bilinear form solve at which the variability of
computer performance can have a greater effect. It should also be noted that for the 5 finest grid levels the adjoint and
ETE solves require a much better preconditioner. The non-zero pattern of the SAI preconditioner had to be increased
by about 25x. Typically a pseudo-time-stepping method would be used to improve the conditioning of the system.
Depending on the selection of the pseudo-time-step needed converge the solve, one could argue that the runtimes for
the pseudo-time-stepping method might even be greater than what is quoted in Table 3. Therefore, even with a much
cheaper preconditioner, the bilinear form approach can achieve the same ends as separate adjoint and ETE solves at a
fraction of the cost.
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Table 3: Runtime (sec) – Adjoint, Error Transport Equation, and Bilinear Form Solves

Standard Approach Bilinear Form Approach
Ncells Adjoint ETE Adjoint+ETE κBF = 1e-1 Speedup κBF = 1e-2 Speedup κBF = 1e-3 Speedup

32 0.0877 0.0515 0.1392 0.0305 4.57 0.0390 3.57 0.0302 4.62
64 0.3581 0.9034 1.2615a 0.0376 33.57 0.0431 29.28 0.0438 28.78

128 1.5549 1.5054 3.0602a 0.0599 51.08 0.0830 36.85 0.0731 41.85
256 5.6034 5.8143 11.4177a 0.1479 77.21 0.1502 76.02 0.1512 75.49
512 13.7266 14.3274 28.0540a 0.5213 53.82 0.5443 51.54 0.5490 51.10

1024 53.2667b 35.0792 88.3459ab 1.7163c 51.48 2.0403c 43.30 1.9616c 45.04

aRequired better preconditioner for both Adjoint and ETE Solves
bDid not converge
cRequired better preconditioner

VI. Conclusions & Future Work
In this work, a new approach to functional error estimation is presented based upon the solution of an error transport
equation (ETE) for the local solution error which is much more efficient than a conventional adjoint approach when
multiple functional error estimates are required. The ETE approach is able to obtain the same functional error estimates
as a standard adjoint approach in a more efficient manner. Computational speedups on the order of n adjoint solves
are achieved where n is the number of functionals of interest. In addition, the proposed approach also provides local
error estimates in the primal solution variables (e.g., density, velocity, and pressure).

Another technique, based upon Krylov subspace methods, is presented which takes advantage of the bilinear form
of the adjoint correction. This method only requires the adjoint problem and the ETE be solved approximately, yet
is still able to obtain an adjoint correction that is just as accurate as a standard adjoint solve. As a result, an accurate
functional error estimate, a moderately accurate local error estimate, and approximate adjoint variables for adaptation
are obtained in a more efficient manner. For the quasi-1D nozzle problem, the bilinear form approach achieved
speedups on average between 30x and 50x compared to the total time required to solve the adjoint problem and the
ETE separately. The approximate adjoint variables produced with this method are also shown to produce a similar
adapted grid to one obtained with exact adjoint variables.

These new approaches could have important implications for the application of functional error estimation and
adaptation to large engineering problems. Based on the results presented here, engineers might no longer be restricted
to a limited number of functionals because of computational costs. Work still needs to be conducted to see how the
speedups obtained with these approaches scale with problem size. Also, in a practical application, exact truncation
error will not be known. Therefore, further testing will need to be performed which assesses the performance of
these methods with estimated truncation error. In addition, the authors hope to investigate Krylov subspace recycling
techniques [36–38] which could improve the performance of the bilinear form approach to functional error estimation
when multiple functionals are required or when multiple bilinear forms must be solved on a sequence of adapted
meshes.
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Appendix
A. Appendix A - Condition Number of Dimensional and Non-dimensional Residual Jacobians

Table A.1: Residual Jacobian Matrix Condition Number

Subsonic Supersonic
Ncells Dimensional Dimensional (Scaled) Non-dimensional Dimensional Dimensional (Scaled) Non-dimensional

32 6.28e+10 1.38e+06 2.25e+04 1.07e+13 1.96e+06 9.58e+03
64 3.45e+12 5.30e+06 1.06e+05 2.29e+13 4.22e+06 1.86e+04

128 2.57e+13 1.75e+07 3.47e+05 5.25e+13 8.69e+06 3.71e+04
256 7.78e+13 4.48e+07 8.64e+05 1.20e+14 1.76e+07 7.42e+04
512 1.69e+14 9.47e+07 1.81e+06 2.71e+14 3.54e+07 1.49e+05

1024 3.42e+14 1.91e+08 3.65e+06 6.04e+14 7.10e+07 2.97e+05
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