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1. Conclusion

The Reform approach to mathematics education is counterproductive
for high-tech careers, even for high-achieving students. It should be
considered a terminal track for students interested in such careers.

This is a sad conclusion. When the Reform movement started making waves
at the college level in the 1990s I, like so many others, found the ideas bold and
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exciting. I taught from a Reform text for a few years and it didn’t work, but I
presumed this was something about me rather than the text.

In the late 1990s I became involved in another bold and exciting project: computer-
based education in the Math Emporium at Virginia Tech1. I did a great deal of
one-on-one diagnostic work with students, helping them learn rather than teaching
them. In retrospect I see that I was learning too; about learning, and the difference
between teaching and learning. My students had troubling deficiencies, and I was
drawn by this into K-12 education. I’ve had many adventures in education since
then, and each one increased my anxiety and sense of urgency. This essay is the
result.

The goal here is to explain why educational problems matter, give some nitty-
gritty detail about learning deficits, and trace out some of their causes. The main
conclusion is described above, and cannot be avoided. Several others are described
in §6 and I mention two here. First:

It’s not the teachers

It is fashionable to blame the current mess on incompetent teachers, but this is
misplaced: it is the curriculum and methodology that are incompetent. Teachers
following them faithfully should get poor outcomes. Worse, those calling for better
teachers also call on schools of education—the real perpetrators—to provide them.
Bad plan. I urge those wise enough to see that we are in a hole to also be wise
enough to stop digging.

In fact, it seems likely to me that our current teacher corps could do the job
if provided with competent methods, materials, and training. Hard, yes, but ‘not
impossible’ would be very good news: we wouldn’t have to wait for governments
to raise taxes for higher salaries and better working conditions. We wouldn’t have
to wait for a complete replacement of teachers by a teacher-education system that
currently can’t even keep up with the attrition rate. Fixing the program will be
hard, replacing the teachers would be impossible.

The other point is:

We need separate tech-oriented mathematics tracks

If a child wants to play the violin with any proficiency, private lessons are nec-
essary; school music programs are not enough. If a child wants to be a professional
violinist then more-disciplined lessons are necessary, to avoid habits that might
support proficiency but block professional development. The professional must be
able to focus on the music, and fully-correct use of the instrument must become
nearly transparent.

Mathematics is the instrument on which science and engineering are played.
Someone who has to think about the instrument will have difficulty being more
than mediocre. Achievement at the highest levels usually requires basic math skills
so correct and so well-learned that they are both effective and transparent. Unlike
the private tutoring system in music, responsibility for mathematical development
has been given to the schools. But to effectively meet this responsibility, schools
must provide a range of instruction and discipline analogous to the range from
standard school music programs to professional violin tutors.

The use of tracking has declined substantially in the last few decades. If we
want high-level performance back, then we have to bring back tracking. It will,

1 http://www.emporium.vt.edu/
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however, be necessary to address some of the drawbacks that drove the de-tracking
movement, see §6.2.

2. Why weak high-tech outcomes are a problem

On the individual level, failing to develop technical talent raises concerns about
wasting talent and not appropriately serving some students. On the other hand if
we block access to technical careers, clever people can become lawyers or bankers
or something. The inescapable problems are on the societal level.

We are producing fewer well-prepared scientists and engineers than our univer-
sities and high-tech industries need, and make up the difference with people from
China, India, eastern Europe, etc. Many come to the US for advanced training, and
they dominate elite graduate programs because Americans can’t compete. They
aren’t smarter than Americans, just better prepared. But having our universities
and high-tech industries dependent on a steady flow of well-educated foreigners (the
“educational parasite” strategy, for short) is dangerous in the long run.

This was how the “Nation at Risk” commission described the situation thirty
years ago [12], and why they identified weak education as a threat to national pros-
perity. After thirty years our universities and high-tech industries show the effects:
they are heavily populated with immigrants and a great deal of the innovation in
the US is being done by people from China and India. The fact of domestic under-
production should be obvious even if the cause is not. Unfortunately, our current
K-12 graduates have even more deficits than before, and we at the college level
are even less successful getting them up to speed. This analysis also suggests that
the new Common Core State Standards in Mathematics (CCSSM) will lock the
problems in place for another generation. We will depend, more than ever, on the
educational-parasite strategy. How long can this possibly last?

New since thirty years ago: graduate programs and high-tech industries in China
and India have made great strides and are hungry for dominance. Many of those
well-prepared students are now staying home, and high-tech jobs are already start-
ing to go where the people are. Leadership in specialized target areas has already
shifted, and this trend will accelerate as our head start erodes, our imported leaders
age out, and our loss of leadership attracts fewer intellectual imports. My guess is
that it is too late to prevent loss of US leadership in most technical areas, even if
we address our shortfall immediately. If we put it off too much longer we may end
up struggling to stay ahead of Brazil and Mexico.

3. Report from the front lines

The diagnosis begins with a report on math for engineering and science at Vir-
ginia Tech. The specific context is a course for second-year science and engineering
majors, on multivariable differential and integral calculus, and infinite series.

3.1. Discipline from the real world. Virginia Tech has strong programs in sci-
ence and engineering, and we get the best students in the state who don’t go
somewhere like Cal Tech or MIT. I am one of the people responsible for developing
the math skills needed for engineering. Our goals for student learning are set by
what it takes to deal effectively with the real world, and can’t be redefined.

The problem is that, as compared with fixed real-world goals, useful preparation
of incoming students has been declining for thirty years. The decline accelerated
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10-15 years ago and the bottom has almost dropped out in the last five years2. Ten
years ago I could still get most of my students up to speed by demanding better
work (these are the bright ones, remember), but this year the old goals are simply
impossible for many of them. I tell them “if you are an English major I will give
partial and extra credit, drop bad scores, and grade on a curve, but if you are an
engineer you actually need to be able to do this.” Ten years ago this was motivation
to do better; now it is a hint that they should switch majors.

Recently a student came to try to get more partial credit. He had put a plus
instead of a comma in an expression, turning it from a vector to a real number.
“But there was an example that looked like this, and anyway it is only one symbol
and almost all the others are right.” He had never heard the words ‘conceptual’
and ‘error’ used together; it made no sense to him and he would not accept it as a
justification for a bad grade. I tried my usual “are you an engineer? . . . ”, but he
would not say and seemed unmoved. He was sympathetic with my frustration with
poor preparation, but felt I should go with the flow and downscale my expectations.
Looked him up afterwards: math major. Ouch.

This student was unusual in his determination to make the argument, but not
unusual in the mistakes he made or in being more interested in partial credit than
learning what he had done wrong. After this experience I told my classes that I was
happy to help them with problems (I offer about 8 hours a week of office hours) but
would not negotiate grades. Unfortunately, instead of coming for better reasons,
they quit coming.

3.2. Infinite series didn’t converge. The last third of this course concerns in-
finite series, and is the first point in our sequence where logic and mathematical
structure cannot be avoided. The answer to ‘does it converge’ is either ‘yes’ or
‘no’, but serious reasoning is needed to reliably determine which. Instructional
concern shifts accordingly, from getting the answer right to getting the reasoning
right. Fifteen years ago students struggled with this and few were able to see it on
a structural level, but most were at least able to deal with the logically-complex
rules. Now it is like hitting a brick wall. What is going on?

To find out I announced a new grade scheme: a blank problem would be worth
30%, and they could lose this by writing something I felt they should know is
nonsense. One day I will learn not to do things like this. Many of them honestly
did not understand what did or didn’t make sense, and I think I would rather
not have known. Outcome: of 60 students, 55 failed and quite a few scores were
lower than the blank-paper 30%. Highest score 99/100 (architecture student, high
school near Bejing), next was 77 (private school that did not allow calculators). The
following semester I started with a test on middle-school skills (most failed), serious
quizzes, and frequent warnings about expectations. Many dropped the course but
30 of the 47 remaining still failed the test on series. There was, however, one perfect
paper (high school taught in a monastery).

3.3. Dismayed. One day a student asked, “This is what I was taught to do in my
tenth-grade class. Why did you give me a 0?3” Alarmed, I took a poll: 60% had seen
infinite series in high school! As with the integral calculus they had been taught

2Some of this acceleration is probably due to No Child Left Behind. Reform educators who
opposed NCLB should not be blamed for all of this.

3This should be a question for the high-school teacher.
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some simple tricks (“sit”, “roll over”, “fetch”, “use the root test”, . . . ). The precise
conceptual preparation necessary to go beyond the tricks was incomprehensible to
them, but rather than trying to learn, most of them were trying to survive using
the tricks. As with serious calculus, high-school exposure is a barrier that has to
be overcome, and many students don’t make it.

4. Learning deficiencies

This section gives more detail on my students’ cognitive and skill deficits, and a
description of their sources in reform practice. Bear in mind that these are relatively
high-performers, mostly second-year engineering students at Virginia Tech, and
that ‘learning deficiency’ is defined functionally in terms of what high-performers
need for technical careers. To keep this distinction clear I use ‘tech deficiency’,
‘tech-appropriate standards’, etc.

An overarching problem is that reform courses have very low functionality goals.
This means tech deficiencies are either ‘not part of our mission’, or go unnoticed.
Tech deficiencies that are visible but dismissed as unimportant are illustrated in
the next section, §4.1.

Curriculum innovations have led to many new tech deficiencies. §4.2 gives a
disturbingly long list of problems due to the way calculators are used. Making
tests “calculator-friendly” obviously makes these deficiencies invisible, see §5.1.

Deficiencies in reasoning and precision are described in §§4.3–4.6. Another cur-
riculum innovation, discovery-based learning, seems to have contributed substan-
tially to this, see §4.3.

4.1. Basic knowledge and skills. I began a recent semester with a skills test on
what I think of as middle-school or early high-school material. The first question
was “Solve bx2 + (b− 1)x + 1 = 0 for x.” This is supposed to trigger a reflex to use
the quadratic formula, and take about ten seconds4. Only 30% could do it at all.

I explain why this is important. Many procedures in mathematics require solving
for something. There are very few families of relations that students can solve
quickly and reliably and—because of the quadratic formula—quadratic polynomials
are the most useful. It would be great if we could also use cubics, trig or exponential
solution procedures, but these are complex enough even for well-prepared students
that they would seriously distract from the main topic. Consequently we contrive
a great many of our examples and problems to depend on the quadratic formula,
and we need for students to be able to use it quickly and transparently. Students
who do not have this skill (around 70% now) are at a serious disadvantage.

Development of fast, accurate, and transparent skills has been explicitly de-
emphasized in the reform curriculum (cf. “drill and kill”). Rather than requiring
memorization of the quadratic formula, “barriers are lowered” by using quadratics
with integer roots that can be easily factored. The focus is almost exclusively
on polynomials with numerical coefficients, so the more realistic examples with
symbolic coefficients seem completely alien.

The next question was “Describe the c that satisfy |2 − c| ≤ 3, in interval
notation”. Only 20% got this completely right, though a bit over half got it well
enough that it would not have killed a line of reasoning.

4Really ten seconds. This is supposed to indicate the level of ‘automaticity’ needed.
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The question “Find the coefficient on y2 in the product(
(a + 2)y2 + 3y + 7

)(
2y2 − ay + 1

)
,

when it is written as a polynomial in y”, is not hard if one understands the structure
of polynomials well enough to pick out only the parts of the product that contribute
to the y2 term. About 35% managed to get the answer but, alas, most multiplied the
whole thing out and discarded what they did not need. About 30% were essentially
clueless.

Again the school focus is almost exclusively on polynomials with numerical co-
efficients, and many students simply did not know what to do with the symbols.
Products of polynomials are usually limited to the simplest case (two binomials).
The mnemonic “FOIL” gives intelligence-free guidance in this case but often be-
comes a barrier to dealing with larger examples.

4.1.1. Summary. Routine skills that should be established in middle school and
well-exercised in high school are weak or missing. Teaching calculus and statistics
without these skills is like teaching writing without a firm grasp of the alphabet.

4.2. Calculator-related deficiencies. Calculators are problematic for direct in-
struction as well but, having demonized drill, reform educators are more deeply
committed to them and less likely to be aware of damage. They also tend to iden-
tify calculator use per se as mathematical, because they have little awareness of the
mathematical sophistication needed for effective calculator use.

The following examples of calculator-related deficiencies come from extensive
one-on-one work with students and are discussed in detail in other essays [16].

4.2.1. Weak symbolic and abstraction skills. It is now common for students to work
numerical word problems quickly and easily with a calculator, but be unable to write
the corresponding arithmetic expression and be stumped by the same problem with
a symbol in the coefficients. In written work I see parenthesis errors that reflect
dependence on encapsulation by sequential evaluation in calculator use. Symbols
have gone from “things that act like numbers” to qualitatively different and alien,
because numbers are processed with calculators and symbols aren’t. The reason
seems to be that the more complex tasks in K-12 are now usually formulated nu-
merically and done with calculators, with a corresponding reduction in symbolic
work, and that the resulting calculator expertise does not transfer to algebraic and
symbolic skills.

This analysis also gives a useful perspective on what actually happens in manual
arithmetic. We represent numbers by symbols. Manual arithmetic has symbolic
and organizational subtasks that involve algebraic structure of addition and multi-
plication, and subtasks in which operations are carried out. It seems very likely that
the non-numerical subtasks provide templates and subliminal preparation for sym-
bolic work. As a result, de-emphasizing manual arithmetic probably contributes
significantly to symbolic skill deficits. On the other hand, these benefits are ac-
cidental side effects rather than explicit objectives of manual arithmetic. A good
understanding of them should lead to more effective ways to get them back than
simply reinstating traditional arithmetic. This is explored at length elsewhere.
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4.2.2. Weak number sense. In manual arithmetic the structure of numbers is used
to carry out, or sometimes to avoid, calculation. Awareness of structure is func-
tional. In calculator work, all numbers are qualitatively the same, so there is no
payoff for awareness of structure. Students don’t develop it. For instance multi-
plying by a power of ten can be accomplished by moving the decimal point. This
is powerful in hand work, but useless on a calculator because moving the decimal
point is accomplished by multiplying by a power of ten.

Weak number sense has two consequences. First, symbolic expressions often
have analogous structure. Awareness of it in numbers makes it easier to see in other
situations. Second, we need a certain amount of transparent mental arithmetic to
be able to illustrate new procedures. Specifically, we want to be able to contrive
examples in which the arithmetic does not break focus on the main task, but also
without misleading numerical coincidences. Traditional students usually have skills
adequate for this, but students who need a calculator to divide by ten do not.

4.2.3. Weak geometric sense. Qualitative sketches are essential in many areas of
science and engineering, and qualitative function graphs give easy ways to organize
a great deal of information. We used to take it for granted that students would have
internalized libraries of shapes, including exponentials, logarithms, lines, quadrat-
ics, and basic trig functions. However, the skills test included the question:

“Roughly sketch graphs of y = 3x2 − 5, and the logarithm y = ln(x). Label
intersections with x and y axes, and please make the drawing large enough to be
easily understood.”

Only about a quarter of the class could draw something that resembled the
logarithm. Around 2/3 managed an acceptable quadratic, though it often looked
more like a “V” than “U”. Many of the drawings were replicas of a graphing-
calculator display, complete with poor choice of scale and too small to be useful.

Engineers complain that students can no longer do the rough sketches needed to
organize many engineering problems. A clue as to why: when I ask them to pick
up a pencil to draw a graph, some of them act as if I was asking them to pick up
a snake. Apparently the eye-hand coordination aspect of actual drawing plays an
important role in internalization of qualitative geometric structure. If they draw
it they might get it, but just looking at it doesn’t stick. High-school programs
that use calculators for graphing, and that test visually (“which of the above four
curves. . . ”), produce little real learning. Assessments used by K-12 educators do
not reveal this.

4.2.4. Summary. Calculators improve outcomes when the measures are adjusted to
be ‘calculator-accessible’ (purge symbols, numerical answers, test graphs visually).
Calculators are also part of the modern high-tech image, so they enable students
to look like engineers and scientists. K-12 educators take pride in these superfi-
cial gains and are ignorant of (or strongly deny) evidence that this has undercut
the learning needed for effective calculator use, let alone traditional symbolic and
numerical skills.

4.3. Reasoning deficiencies. This section provides context for reasoning defi-
ciencies described in following sections. It took me a long time to recognize and
make sense of these, so I start with diagnosis rather than symptoms.

There are (roughly) three levels of student work in mathematics:
(1) Follow patterns inferred from examples;
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(2) Use systematic methods and algorithms that, among other things, account
for the patterns in examples; and

(3) Exploit the mathematical structures that lie behind algorithms.
Each level provides substantially more flexibility, range and accuracy in applications
than the one before it. Learning at each level is faster, more powerful, and more
transferrable than at the one before it. Basic features are described below, and
specific illustrations are given in §§4.4–4.6.

Advanced mathematics takes place at the structural level. Failure to make the
transition to this level makes advanced study in mathematics impossible, and is a
serious disadvantage in most technical professions. This has been the main bottle-
neck in high-tech preparation for at least a century. Reform attempts to open the
bottleneck by redefining ‘mathematical structure’, ‘understanding’ etc. in more-
accessible ways are necessarily ineffective: power comes from functionality, not
words, and the redefinitions disconnect the words from functionality.

4.3.1. Patterns and discovery. Natural, or discovery-based learning takes place at
the pattern-in-examples level. Patterns are abstracted as rules of thumb or heuristic
ideas adapted to the examples given. This is done by the same cognitive processes
that produce habits and superstitions so, naturally, the results are unreliable and
poorly related to mathematical structure.

It is possible to get students to refine pattern-in-examples learning, but it is
tedious and difficult because students have to be told repeatedly that they are
wrong, and have to be willing to spend a lot of time trying to figure out why
and how to fix it5. The discipline and engagement necessary to get functional
outcomes are rare in the general student population. The level of discipline needed
is unacceptable in reform education, and the expertise necessary is rare among
teachers of any stripe. In practice, therefore, the tech deficiencies of discovery-
based learning are not corrected.

The conclusion is that, in a tech-oriented curriculum, essential tools such as the
quadratic formula must be taught directly. The formula for roots of cubic polyno-
mials, on the other hand, is not an essential tool. Sub-optimal discovery outcomes
would not be harmful, and it seems a good topic for a discovery investigation in a
tech course.

Students taught mathematics at the pattern-in-examples level often get stuck
there. Advancing to the systematic methods and algorithms requires not only un-
learning the dysfunctional heuristics they discovered for themselves, but unlearning
the approach to learning that produced these dysfunctional heuristics.

4.3.2. Methods and algorithms. Learning directly at the method-and-algorithm level
takes advantage of accumulated experience to bypass the more-primitive level. Stu-
dents get functional tools quickly and reliably and are less likely to get stuck at the
lower level. Most students enjoy exercising their skills if given interesting problems,
and they are more receptive to the mathematical structure behind well-learned al-
gorithms.

In principle, traditional K-12 mathematics education takes place at the methods-
and-algorithms level. In practice there are difficulties: the algorithms are usually

5In mathematics this is known as the “Moore method”, cf. Douglas, [4]. As an undergraduate
I took such a course with Gordon Whyburn at the University of Virginia. A good experience, but

very slow and disciplined.
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historical relics, often not well-adapted to mathematical structure, and the standard
range of problems does not provide interest or satisfaction as rewards for good skills.
Word problems usually have completely trivial mathematical components.

4.3.3. Mathematical structure. Work at the structural level replaces a mass of rules
and facts with logical reasoning and a much smaller list of more-basic rules and
facts. Naturally, this only works if the reasoning is highly disciplined and the
inputs are used with complete precision.

Our calculus courses are mostly rule-driven because attempts to introduce ex-
plicit structure have met with resistance and little success. Infinite series is usually
the first topic with a structural orientation, because the reasoning is relatively
transparent and the questions are qualitative. But it is accessible only to students
already functioning effectively at the method-and-algorithm level.

In the very old days, math and math-heavy science majors got a sink-or-swim
introduction to the structural level in advanced calculus, baby real or complex
analysis, abstract algebra, and topology courses. Most programs now have an “In-
troduction to Proofs” course to ease the transition. But this means that even math
majors don’t see the real thing until their fourth or fifth semester in college. Mod-
ernizing the methods and algorithms in earlier courses should make this transition
much easier.

This completes the overview. The following sections provide detail and explicit
examples.

4.4. Pattern-matching. I can’t remember any students in engineering calculus
working at the pattern-in-examples level fifteen years ago, but there are quite a few
now. Their rule skills are so poorly developed that sometimes just changing a letter,
for instance asking for the integral or derivative of bx2 with respect to b, throws
them off. Another example concerns derivatives of the expression xy. Everyone
knows the derivative with respect to x. Many not only don’t know how to take
the derivative with respect to y, but seem unable to learn how. This is partly
because the high-school approach to exponentiation is not functional in calculus,
so this is not covered in high-school type courses. But when the correct pattern is
missing, human pattern searches usually return the best available match (in this
case, derivative with respect to the wrong variable) rather than no match. They
get an error, and without recourse to disciplined reasoning it is hard to identify
these, or correct them when they are identified.

Another example concerned a test question on calculation with derivatives of
vector-valued functions. The answer was supposed to be a vector of the form
(A, B,C). About 15% of the class did the computation (including a matrix product)
correctly up to the last step, but then ruined the whole thing by converting the
vector to a sum A + B + C. They explained that there was an example like this
in which the outcome was a sum, not a vector. I checked, and found an example
with a real-valued function quite similar to the sum of the components of the vector
function. The outcome in the example was, accordingly, a sum. The point is that
when confronted with a conflict between the outcome of a careful calculation and
a pattern recalled from an example, they gave priority to the pattern.

The opposite mistake, following the pattern of an example to write an outcome
as a vector rather than a sum, occurred on another test.
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The last example concerns studying for a multiple-choice common final exam.
The department posts exams from previous semesters, but does not post answer
keys. The point of mathematics is, after all, to get the right answer without know-
ing it in advance. Students working at the method-and-algorithm level can get close
enough to this ideal to confidently identify the correct answer from a small number
of choices, and can also identify why the incorrect answers are wrong. But objec-
tions from some students revealed that they could not study without an answer key.
To them, “studying” means discovering patterns of connections between questions
and correct answers, not exercising the methods that produce correct answers!

4.4.1. Summary. Reform-trained students often rely more on pattern-in-example
associations (‘discoveries’) than on careful step-by-step reasoning and use of algo-
rithms. Their reasoning skills are rarely strong enough to refine or even filter the
pattern-matching process, and are inadequate for extended or unfamiliar problems.
They are doomed to fail advanced courses. The most painful aspect for a teacher
is that they can’t even identify why they fail, and go away thinking they must be
stupid. But this isn’t true: anyone who can get to second-year engineering calculus
using pattern-in-example learning is not stupid.

4.5. Disciplined reasoning. Mathematical reasoning in real life is like walking a
tightrope: if you make a single misstep, you fall. Functional skills therefore require
careful step-by-step reasoning, learning to spot errors (especially their own), and
learning how to fix them. The payoff is the ability to work long and complex
problems with confidence. Years ago near the end of a semester I could say to my
students, “this problem took almost an hour and required a variety of techniques
that we did not anticipate. Getting it right is a real accomplishment. You should
write home: ‘Mom, look what I can do!’.” But if I give an extended example now,
most students will lose traction after one or two steps and its not something to
write home about.

The most telling errors occur in infinite series. Most students do well with simple
problems, and at first glance their work seems to show appropriate limit calcula-
tions. But the success rate drops sharply as problems become more complex, and on
closer inspection the limit arguments are often bogus. There are frequent exponent
errors such as ( 1

a )1/n = 1
an , (a(bn))1/n = ab, and ( 1

a+b )n = 1
an+bn . Mistakes with

factorials are common, for example canceling the ‘!’ to get (n+1)!
n! = n+1

n . Parenthe-
sis errors when incrementing the index in the ratio test are common. They know
that limn→∞ 5/n = 0 because “1/∞ = 0”, but some use the same heuristic argu-
ment to conclude limn→∞ 5n/n = 0. Bizarre things are attributed to L‘Hǒpitál’s
rule. Sometimes they simply pull limits out of the air. Finally, many cannot dis-
tinguish between statements such as ‘the nth term test fails to show the series
diverges’, and ‘the nth term test shows the series fails to diverge’.

There are two immediate questions: how can reasoning like this be successful at
all, and where did it come from?

Limits and series are actually good opportunities for heuristic work. Simple limit
calculations tend to be insensitive to errors, and this translates to simple patterns
for outcomes. There are few enough tricky limits, (eg. limn→∞(1 + 1/n)n), that
they can be memorized. There are only two possible answers to “does it converge”.
As a result, pattern-oriented students can usually determine the outcome of simple,
routine problems.
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Where such reasoning comes from? I mentioned above that almost 2/3 of my
students had a heuristic introduction to limits and series in high school, nearly all
in reform-oriented classes. They have been taught that algorithms are inferior to
‘understanding’, and that proofs—including limit calculations—are things mathe-
maticians do after the fact to justify conclusions from intuition or ‘understanding’.
They do not expect conclusions to emerge from proofs, and their imitations of limit
arguments are not reliable enough to do this for them anyway.

This explanation leads to the larger question: why do reform educators avoid
disciplined reasoning? As a practical matter, discipline is unfashionable and chil-
dren are increasingly unwilling to accept it. Discovery-based learning does not
develop it, but most educators don’t notice. Some educators offer a theoretical
justification: standards for reasoning have changed a lot over the millennia, and
if they prefer the less-disciplined approach of the fifteenth century, or even the
basically-visual approach of the third century BCE, it should still count as ‘math-
ematics’. Some promote intuitive approaches, to emulate the apparently effortless
intuitions of experts. Quite a few educators think of logic as a cultural artifact;
magical incantations with no essential function. Finally, all this is supported by low
expectations and what amounts to a quantifier error. ‘Teach quadratics’ is taken to
mean ‘teach some examples’ rather than ‘teach a flexible and effective tool’. ‘Teach
series’ means ‘do tricks that work for a few simple examples’ rather than ‘lay a
foundation for the subject’.

Finally, why is disciplined reasoning necessary? The discussion here provides a
good context for an answer. When someone reaches his personal limits of heuristic
reasoning and intuition, the reasons for failure are obscure and there is not much
that can be done about it. This is why advanced mathematics was limited to a
few extraordinary people up through the nineteenth century, and why students
feel stupid when they reach their limits today. The great discovery of the early
twentieth century [14] was that basing mathematics on disciplined reasoning rather
than intuition makes it accessible to ordinary people. When people reach the limits
of good basic logical skills then the failures are localized and can usually be identified
and fixed. There is a clear, though disciplined and rigorous, way forward. Experts
do eventually develop powerful intuitions, but these can now be seen as a battery,
charged by thousands of hours of disciplined reasoning and refinement. Without
the thousand hours you have a dead battery, and without training in disciplined
reasoning you have no way to charge it.

4.5.1. Summary. Reasoning skills learned in reform courses are rarely strong enough
to refine or even filter the pattern-matching process, and are completely inadequate
for successful work at the mathematical-structure level. If real mathematics is like
walking on a tightrope, reform math is like giving partial credit for steps anywhere
near a limp rope on a pavement. Or like a spelling bee in which prizes are awarded
for getting 80% of the letters right. Describing the outcomes as ‘mathematics’ is
like describing air guitar and lip-synching as ‘music’.

4.6. Functional concepts and precision. There are key facts and definitions
that took professionals centuries to perfect. Many of these, including the quadratic
formula, convergence, continuity, derivatives, and completeness of the real numbers,
can be stated in a single carefully crafted sentence. They can be thought of as
cognitive seeds, or highly condensed understanding, and as such are precious and
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powerful legacies from our predecessors. They have also been optimized for effective
use in disciplined reasoning.

Professionals begin by essentially memorizing such statements. Preliminary dis-
cussions may give clues about what to expect, but they are brief and not intended
to develop understanding. Understanding and skill emerge from use. Beginning
with a highly-optimized formulation enables rapid development of fully-precise in-
tuitions and highly-reliable skills. This approach has been extremely successful,
and most of us urge our students to follow this pattern in hopes that they will
experience similar success.

In the reform “dialogic” approach, understanding is supposed to precede skill
or precise concepts. Students are given heuristic explanations, examples and other
hints, and are invited to synthesize or discover their own concepts. But the results
have almost no chance of being functional: remember that it took gifted profession-
als centuries to extract themselves from all the subtle dead ends. I saw this in action
in the late nineties when I taught from a reform text for several semesters. Most
of the students failed to synthesize much of anything, and what they did come up
with rarely supported material in the next course. My current students have been
indoctrinated to believe memorization is ‘wrong’, so they find it almost impossible
to take even the first step of the process that professionals find effective. They
lack the logical skills needed to recognize and fix dysfunctional concepts, so even
good students arrive at the college level with deeply embedded confusions about
elementary material.

Embedded conceptual errors are difficult to fix. I first experienced this myself in
a graduate seminar I taught at Yale. I scanned the paper we would study, to get an
“understanding” to use to orient the students. This understanding turned out to
be wrong. We spent a semester grinding through details and I saw my error clearly,
but what did I remember decades later? The erroneous first impression. Recent
neuroscience studies (cf. [5] for the physics version) paint a darker picture: efforts
to correct conceptual errors often never actually succeed, and they are suppressed
rather than fixed. Moreover, this suppression requires effort and attention. Some
of my students persistently make middle-school errors. I used to say “you must be
more careful”, but if they are still doing it when they get to me, their automatic
facilities are not recognizing the mistakes as wrong. “Careful” is not enough. Now
I say “you have a problem with this; you must watch your work closely to catch
it if it happens”. For some it is too late. Others can, with effort, learn to con-
sciously suppress these problems, but the cognitive overhead will keep them from
ever working at full capacity.

The point is that the professional memorize-first approach is not a philosoph-
ical preference, but a hard-found way to work around limitations of the human
brain. The educational understand-first approach is a philosophical preference,
and maybe even a beautiful one, but no argument for it can change the fact that
it is incompatible with human cognitive structure and inflicts damage.

4.6.1. Summary. To teach someone to use a hammer, have them drive a lot of nails.
Asking them to ‘understand’ or ‘discover’ hammers essentially guarantees confusion
and poor skills.
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5. Mechanisms

I describe factors that have played a role in the decline of learning needed for
high-tech careers.

5.1. Problems with testing. Like it or not, high-stakes testing heavily influences
course goals and outcomes. Misunderstanding what they measure essentially guar-
antees that the influence will be bad. Believing that tests are neutral assessments
essentially guarantees that the influence will be overlooked. Current practices, in
short, pretty much guarantee that high-stakes testing will be influential and coun-
terproductive and this will be unnoticed.

5.1.1. Learning missed by tests. Tests measure things we think should be corre-
lated with learning, not learning directly. Correlations are speculative, and what is
identified as ‘learning’ depends heavily on educational theory and ideology.

For example: multiplying two three-digit numbers by hand requires quite a bit
of neural activity. Multiplying with a calculator requires almost no neural activity,
but improves accuracy. Using performance (the number obtained) as a measure
completely misses the difference. If the neural activity has important correlates
(eg. providing templates and subliminal preparation for algebra) then conclusions
drawn from test outcomes will be seriously flawed.

5.1.2. Goal distortion by tests. Tests have time constraints, and to accommodate
this, tests traditionally spot-check and focus on easy cases. This may be harmless
when students know nothing about the test, but if representative problems or tests
from previous years are made available then these features become visible. Easy
cases then tend to become course goals. Examples that have caused problems
downstream include restricting quadratics to ones with integer roots, restricting
polynomial multiplication to binomials, and focusing on numerical problems.

To avoid goal dilution, standardized tests must be noticeably harder than blind
tests. The advance information about test contents can offset this, but it is a
delicate balance.

5.2. Self-serving goal distortion. Systems with no responsibility for downstream
consequences will set goals for their own comfort and convenience. K-12 educators,
for example, have replaced precise statements with vague ‘understandings’, replaced
disciplined reasoning with vague ‘explanations’, and replaced skills with calculators.

Systems like NCLB that focus on performance at the lowest levels, particularly
when enforced with high-stakes penalties, need standards and tests that give schools
a reasonable chance to avoid penalties. In other words, weak. Minimum standards
will come close to being proficiency standards, and outcomes will be uniformly weak
because resources are also focused on low-performing students.

All of these effects are easily visible in our schools today.

5.3. Short-term goals without accountability. Mathematics is cumulative.
Children learn addition in the first grade, and professionals thirty years down the
road are still adding. Ideally the approach used for children should be informed
by, and compatible with, later use. Current practice, however, is that the cur-
riculum is compartmentalized. Each level devises its own “age-appropriate” meth-
ods, interprets long-term goal statements in its own terms, and has essentially no
subject-related accountability for the consequences. As a result the most common
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approaches to addition in first grade do not even support activity in the middle
grades. In fact nearly all of the creative and “child-friendly” methods in early
grades are seriously out of step with needs later in the curriculum.

The worst failure of subject-related accountability is in the articulation between
high school and college. K-12 educators’ understanding of the needs of college
students comes from within their own tradition, from free interpretation of general
principles, and from the AP calculus exam. They have enough confidence in this
that they are not fazed by critical feedback from college faculty, and there is no
accountability that might impose discipline.

It should be emphasized that college faculty are accountable, to client depart-
ments in science and engineering, and through them to success in the real world.
College criticism of K-12 programs is not a matter of opinion or optional cultural
differences, but a message passed down from the real world: what you are doing is
preparing students for remedial courses in community colleges, not the real thing.
And many are crippled beyond recovery.

Finally, systems without subject-related accountability are vulnerable to political
“solutions”. College professors, for instance, were unwilling to develop subject-
related accountability for their teaching. As a result they got stuck with student
evaluations, even though the correlation with actual learning is insignificant or
negative, see Clayton [2]. It seems to me that the reform movement is another
instance. It provides a politically attractive solution (improving grades by de-
emphasizing skills) that is irresistible in the absence of effective subject-related
accountability.

6. Further conclusions

Here I sketch a few other conclusions from this line of investigation.

6.1. Stop slandering teachers. As noted in the introduction, it seems to be
fashionable to blame bad outcomes on incompetence of teachers, cf. the Science
editorial by Burris, [1] and the AMS Notices column by Kra [7]. The conclusion
here and in [13] is that it is the methodology that is incompetent. Teachers using
these methods should get poor results. Outstanding teachers may sometimes get
better outcomes by partly compensating for methodological flaws, but remember
these are “better” by flaccid standard measures and still far short of meeting real-
life needs.

My belief is that the current teacher corps is capable of doing much better,
given competent methodology and training on how to use it. The obstacles may
be unsurmountable: the people we would ordinarily turn to for methodology and
training are the ones who got us in this mess. Even if they acknowledged the
problem they would be certain to botch the repair. But this is not a teacher
problem, and it is unconstructive and dishonest to blame teachers for it.

A few comments on retraining: First, this should not be presented as an ideo-
logical winner-take-all struggle in which teachers would have to denounce their old
beliefs as evil. Different children have different needs, and the real evil is insisting
on a one-size-fits-all approach. We need different tracks for different interests (see
the next section) and the reform approach may be satisfactory for the general track.
This leads to the second comment: it is not necessary to retrain the entire teacher
corps, just enough to implement the sort of tech track outlined next.
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6.2. Tech tracks. We desperately need some technically well-prepared people, but
it is both inappropriate and impractical to try to prepare all students for high-tech
careers. Separate tech tracks are needed no matter what happens with the rest of
the curriculum.

Tracking has declined substantially in the last few decades, see Loveless [9, 11]. It
promoted skill development, but it was demonized as “elitist” and “undemocratic”
by the same people who demonized skill development as mindless rote activity. On
the other hand the charges have some foundation, and any attempt to re-introduce
tracking must address the problems directly and honestly.

For example, placement must be based only on interest and performance, not
ability. There will always be profoundly gifted students with no interest in technical
topics, and it is a disservice to everyone to confuse a lack of interest with a lack of
ability. Similarly, technical teachers will be unable to engage such students, and it
would be inappropriate to describe this as a “failure” of the teacher.

Another common concern about tracking is that limited mobility between tracks
will unduly constrain student opportunities. In principle there are straightforward
and graceful ways to address this [15]. However it must be recognized that it would
be very difficult to go from a tech-terminal track to a tech-oriented one. Good
mobility might require intermediate tracks that are at least tech-neutral.

6.3. Alternatives. The approach here has been to start with what is needed for
an effective career in science or engineering, and work backward to see what is
needed from various levels of education. This is a high standard; real success needs
a lot of preparation. The reform approach is terminal from this perspective, but
are alternatives any better?

6.3.1. ‘Traditional’, and best practices. ‘Traditional’ is usually not tech-terminal.
It might serve as a starting point, but it was considered unsatisfactory thirty years
ago (see §2), and while ‘reform’ may make ‘unsatisfactory’ look good, it is still
unsatisfactory. One reason is that in the US in the early twentieth century, the
Progressive movement set the stage for our current predicament by weakening con-
tent and introducing reform-like ideas, see Klein [6] and Lagemann [8]. Many of
these changes are still visible in what we think of as ‘traditional’ today.

Best practices in other countries are also not the solution. The problem is that
professional practice changed substantially early twentieth century, to become bet-
ter adapted to both the subject and human cognition [14]. Extracting highly-precise
understanding from definitions and concise theorems, as described in §4.6, is one
of the most effective adaptations. With the brief exception of “new math”, none
of these changes were incorporated into education anywhere. The result is that
even the most successful programs are still getting (at best) nineteenth-century
outcomes. The students still have to deal with a huge conceptual gap between
their training and the methodology that enabled explosive growth in mathematics
itself over the last century. This will not be satisfactory in the twenty-first century.

6.3.2. New math. The “new math” episode tried to bring some modern methodol-
ogy into elementary education, but was seriously unsuccessful in many ways, see
Loveless [10] for a comparative analysis. It produced a pulse of well-prepared stu-
dents that, by comparison, made the situation in 1980 look so bad to the “Nation at
Risk” commission [12]. These well-prepared students also contributed substantially
to US success in the late twentieth century. But the failures far overshadowed these
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accomplishments and it is essential that the mistakes not be repeated. It seems to
me that the main lessons are:

• The need is for modern treatments of old topics, not modern topics;
• Don’t inflict it on students not interested in technical careers;
• Provide training and support for teachers, and listen and respond to their

feedback.

The K-12 education community drew the conclusion “modern is bad for kids”, but
this is looking more and more like a one-way ticket into the third world.

7. Summary

Thirty years ago the “Nation at Risk” commission concluded

If an unfriendly foreign power had attempted to impose on America
the mediocre educational performance that exists today, we might
well have viewed it as an act of war. As it stands, we have allowed
this to happen to ourselves. [12]

As Pogo put it, “we have met the enemy, and he is us”. But Pogo is a comic
book character and real people are less wise. Instead of recognizing the problem,
the reform movement acted out Einstein’s definition of insanity: doing more of
the same and expecting different results. Mathematics outcomes have worsened in
the last thirty years and are still declining, and how do they propose to respond?
Redouble their efforts to do more of the same.

Is there any way to break out of this death spiral, given that US math-education
is dominated by people committed to the reform agenda? Take the act-of-war view
seriously and have treason trials? Adapt Shakespeare’s suggestion “first, kill all the
lawyers”? A compromise that accommodates both skill and non-skill approaches
through tracking might be acceptable. In any case some sort of rigorous account-
ability is long overdue, and as a start we could at least openly acknowledge the
reality of the situation: reform-oriented math courses are tech-terminal.
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