Visualization of Fiber Orientation in Highly-Concentrated, Glass Fiber-Reinforced, Injection Molded Thermoplastic Composites Using Web3D Technology

1Macromolecules and Interfaces Institute, 2Virginia Tech Research Computing, 3Mathematics Department, 4Chemical Engineering Department, and 5Engineering Science and Mechanics
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

ABSTRACT

Orientation tensors are commonly used to represent orientation in fiber composites. They are excellent and compact tool to describe the orientation in mathematical terms. However, the visualization of the orientation tensors is not straightforward. Therefore, in this paper, we present a simple method to visualize fiber orientation in composites using a virtual reality modeling language (VRML) tool. This tool is used to describe the experimental orientation and simulation results for an injection molded center-gated disk. The results show an easy way to visualize and understand the complex structure of orientation in composites.

BACKGROUND

High Strength Weight Reduction Materials
Office of FreedomCAR and Vehicle Technologies

To identify and develop materials and materials processing technologies which can contribute to weight reduction without sacrificing strength and functionality:
- Increase the fuel efficiency
- Reduce emissions of class 1-8 trucks

GOAL

To combine numerical simulation and experimental programs to improve the prediction of microstructure in short glass reinforced thermoplastics

OBJECTIVES

To simulate the mold filling process for thermoplastic melts reinforced with short fibers using constitutive relations (i.e. stress tensors coupled with a generation expression) which allow coupling between the flow and particle orientation:
- A key aspect of this work will be an experimental evaluation of the predicted fiber or particle orientation distribution throughout an injection molded part.

INNOVATION IN VISUALIZATION

We have introduced virtual reality tools through Web3D to visualize the micro-structure of fiber reinforced melts.
- An effective environment for the unified visualization of 3D orientation data from experiment (microscopy) and numerical simulation.
- Interactive Web3D publication provides a simple and intuitive way to understand fiber orientation data

WEB 3D

Refers to the International Standards Organization (ISO) standards of the Web3D Consortium (web3d.org). Declarative languages like Virtual Reality Modeling Language (VRML) and Extensible3D (X3D) allow interactive 3D multimedia environments and animations to be deployed over web protocols. These standards are by nature cross-platform (e.g. desktops, CAVE) and integrate with common web technologies such as XML and Webservices.

ORIENTATION DURING INJECTION MOLDING

MULTILAYER STRUCTURE

DESCRIPTION OF FIBER ORIENTATION

- Single fiber
- Vector of orientation
- Population of fibers
- Graphical representation

ADVANTAGES OF VISUALIZATION OF ORIENTATION DATA USING WEB3D

- Ability to visualize and inspect fiber orientation data interactively
- Observe tri-dimensional features in the data, e.g. dispersion not evident in 2-D images
- Good method of orientation representation for a non-technical audience

COMPOSITE MATERIAL

- Material properties
 - Matrix: PBT (Nylon66)
 - Filler: 30% standard glass fiber
 - Aspect ratio: 30
- Model parameters obtained from rheometry

EXPERIMENTAL DETERMINATION OF FIBER ORIENTATION

- Procedure:
 - Polishing
 - Etching
 - Plasma etching
 - Image acquisition (reflective microscopy using motorized stage)
 - Semi-automatic image analysis (customized)

EXPERIMENTAL RESULTS

- Elimination of ambiguity problem using shadows
- 3D Visualization
 - Visualization of orientation using mutually perpendicular planes

MODELING OF COMPOSITES

- Balance equations for injection molding
- Short glass fibers
- Constitutive equation: Folgar-Tucker Model with delay (α)
- Evolution of orientation tensor
- Stress due oriented particles
- Polymer matrix
- Newtonian matrix

SIMULATION RESULTS

- Geometry
 - Center-gated disk (R=3 cm, 2H = 1.38 mm) with experimentally measured initial orientation and a 12x30 mesh

- Numerical technique
 - Solve at every time step (coupled approach)
 - Balance Equation or Hooke-Shaw flow approximation
 - Galerkin FEM
 - Constitutive equations
 - Discontinuous Galerkin FEM
 - Find the new mesh coordinates

- Experimental vs numerical fiber orientation
 - Gap-wise fiber orientation (Coupled flow and orientation)

FINDINGS

- Model parameters determined by rheometry can be used to simulate fiber orientation
- Modified procedure let us to improve the fiber orientation measurement using reflective microscopy
- The delay model and coupled flow and orientation improve prediction of fiber orientation.
- In the investigation of fiber reinforced melts, Web3D and interactive visualization environments provide a low-cost and effective means to analyze the relationships between experimental and simulated results

ACKNOWLEDGEMENTS

For additional information please contact:
- Dr. P. Wapperom: p.wapperom@math.vt.edu
- Dr. D.G. Baird: dbaird@vt.edu
- Dr. N.F. Polys: npolys@vt.edu