Algebra Preliminary Exam, Fall 1985

Do ALL problems

    1. Define what is meant by a prime ideal in a commutative ring.
    2. Prove that a nonzero prime ideal in a principal ideal domain is always a maximal ideal.

  1. Prove that there is no simple group of order 56.
  2. Show that a finite field cannot be algebraically closed.
  3. Find all finitely generated abelian groups A with the property that for any subgroups B and C, either or .
  4. Let F be the splitting field of (x3-2)(x2-3) over . Describe the Galois group in as much detail as possible.
  5. Let R be an integral domain and let be an element of the quotient field of R. Set .

    1. Prove that I is an ideal of R.
    2. Show that either or there exists a maximal ideal of R such that .
    3. Conclude that , where the intersection is taken over all the maximal ideals of R.
  6. Prove that and are isomorphic as -modules. (Here denotes the rational numbers and denotes the integers.)
  7. Let G be a group. Suppose that

    1. H and K are nilpotent groups,
    2. there are homomorphisms and , and
    3. , the center of G.
    Prove that G is nilpotent.

Return to

Peter Linnell
Wed Jul 31 16:55:41 EDT 1996