2.4b Supplementary Problems

NAME: ________________ CRN: ________

• In problems 1-3, use the graph of $y = f(x)$ to answer the questions.

1. y

 100 200 300 400

 1 2 3 4

(a) Does there exist a value of $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $f(x) > 100$? Justify your answer.

(b) Does there exist a value of $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $f(x) > 300$? Justify your answer.

(c) If a value of δ exists for both part (a) and (b), which value of δ do you expect to be smaller?
(a) Does there exist a value of $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $f(x) > 100$? Justify your answer.

(b) Does there exist a value of $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $f(x) > 300$? Justify your answer.

(c) If a value of δ exists for both part (a) and (b), which value of δ do you expect to be smaller?
3.

(a) Does there exist a value of $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $f(x) > 100$? Justify your answer.

(b) Does there exist a value of $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $f(x) > 300$? Justify your answer.

(c) If a value of δ exists for both part (a) and (b), which value of δ do you expect to be smaller?
4. (a) Consider the function \(g(x) = \frac{1}{x^4} \). Explain briefly why for each \(M > 0 \), there exists a \(\delta > 0 \) such that if \(0 < |x| < \delta \) then \(\frac{1}{x^4} > M \).

(b) Consider the function \(f(x) = \sin \left(\frac{1}{x^4} \right) \).

(i) Does there exist a \(\delta > 0 \) such that if \(0 < |x| < \delta \) then \(f(x) > 4 \)? Justify your answer.

(ii) Does there exist a \(\delta > 0 \) such that if \(0 < |x| < \delta \) then \(f(x) > \frac{1}{2} \)? Justify your answer.