Math 2534 Homework 9 PMI and Sets

Show all work.

Problem 1: (Use PMI)

Theorem: Given the sequence function \(f(n) = 3^n - 2^n \) and the recursive sequence
\[a_1 = 1, \quad a_2 = 5, \quad a_n = 5a_{n-1} - 6a_{n-2}, \quad n > 2, \] Then \(f(n) = a_n \) for all natural numbers.

Problem 2: (direct proof)

Theorem: Given the Fibonacci sequence \(f_n \), then \(f_{n+2} - f_{n+1} = f_n f_{n+3}, \forall n \in N \)

Problem 3: Given sets \(A = \{a, b, \{c\}, c\}, B = \{a, \{b, c\}, d, \emptyset\}, C = \{b, c\} \)

Find the following: (don’t forget to use equal signs.)

a) Find the following sets:
 1) \(A \cap B \)
 2) \(B \cup C \)
 3) \(B - A \)
 4) \(B \cap C \)
 5) \(A - C \)

Problem 4: Given sets \(A = \{a, b, \{c\}, c\}, B = \{a, \{b, c\}, d, \emptyset\}, C = \{b, c\} \)

Indicate if the following is true or false. (do not justify)

1) \(\emptyset \in C \)
2) \(\emptyset \subset B \)
3) \(\{\emptyset\} \subset A \)
4) \(\emptyset \subset A \)
5) \(c \in B \)
6) \(C \subset B \)
7) \(\{a, b\} \in P(A) \)
8) \(\{\{c\}\} \subset A \)
9) \(\{c\} \in A \)