Math 2534 Homework 8 PMI

Prove the following theorems. Explain and justify any assertions made.

Problem 1:
Define a sequence recursively by: \(a_1 = 1 \) and \(a_2 = 2 \) and \(a_n = a_{n-1} + 2a_{n-2} \) for all \(n \geq 2 \)

a) Find \(a_3, a_4, a_5, a_6 \).

b) Find a formula \(f(n) \) for the \(n \)th term \((a_n = f(n)) \).

c) Prove that \(a_n = f(n) \) for all natural numbers.

Problem 2: Theorem: Given the Fibonacci sequence \(f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2} \) for \(n > 2 \), \(f_2 + f_4 + f_6 + \ldots + f_{2n} = f_{2n+1} - 1 \), \(\forall n \in \mathbb{N} \)

Problem 3:
Theorem: If \(a_1 = a_2 = 1, \ a_n = 2a_{n-1} + a_{n-2}, \ n > 2, \) then \(a_n < 6a_{n-2} \) \(\forall n \in \mathbb{N} \) and \(n > 4 \).

Problem 4: Given the recursive sequence: \(a_1 = 1, a_2 = 1 \) and \(a_n = 2a_{n-1} + 3a_{n-2}, n \geq 3 \),

 Show that \(a_n < 3^n \) for all \(n \in \mathbb{N} \)

Problem 5: Theorem a jigsaw puzzle that has \(n \) pieces can be completed in using \(n-1 \) fits. (A fit means that one more piece is added to the pieces already assembled at a given point in time.)